
Identifying Goals-of-Care Discussions with Large Language Models

Matthew Gonzales, MD, FAAHPM; Deborah Unger, MD, FAAHPM; Guilford Parsons, MD, MS; Melissa Forbin, MBA; Suzanne Engelder, LCSW
Maulin Shah, MD; Canada Parrish, PhD; Azadeh Mobasher, PhD

Background and Context

- Patients experiencing serious illness and their families benefit from conversations about their **care values** and **goals**, which are essential to high-quality, equitable healthcare.
- At **Providence**, we've implemented system-wide efforts to improve documentation of these **Goals-of-Care (GoC)** discussions but tracking narrative, free-text entries in clinical notes remains challenging.
- Structured documentation tools exist but are often seen by clinicians as too rigid. **Traditional methods** such as manual review or rule-based systems struggle with cost, scalability, and accuracy.
- To address these limitations, we developed an **AI-powered** solution using general-purpose **large language models (LLMs)** to identify GoC conversations embedded in unstructured documentation.

Figure 1: GoC identification high-level architecture in Epic

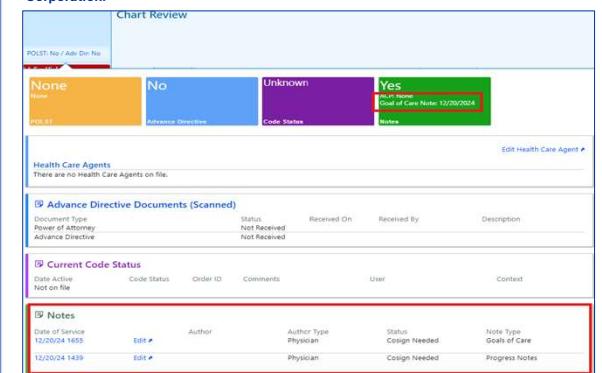
Development and Validation

- We used Azure OpenAI GPT models to detect the presence of key elements in GoC conversations after multiple rounds of prompt engineering, leveraging their strengths in contextual understanding and language processing.
- Annotation guidelines were established through multidisciplinary expert consensus, using **Labelbox** platform, resulting in substantial inter-rater reliability with **mean pairwise agreement of 0.77**.
- We evaluated multiple proprietary LLMs, with **GPT-4o** achieving the highest performance on a dataset of **488** human-annotated clinical notes (Table 1).
- High **specificity** was prioritized for clinically relevant and actionable results. **Error analysis** was used to break the tie.

Table 1: Comparative performance of language models on GOC identification

Model	Specificity	Precision	F1 Score	Accuracy
GPT-4o-with-chunking	0.95	0.81	0.73	0.90
GPT-4o-without-chunking	0.95	0.78	0.76	0.91
GPT-4o-mini-with-chunking	0.93	0.76	0.76	0.91
GPT-4o-mini-without-chunking	0.88	0.62	0.71	0.87
GPT-4	0.92	0.72	0.76	0.90
GPT-3.5-Turbo	0.88	0.62	0.71	0.87

- Fairness and model performance was assessed across race and sex subgroups and **no statistically significant bias** was detected in model performance (Table 2).
- The final model was integrated into **Epic's Nebula** platform for real-time inference within existing predictive modeling infrastructure.


Table 2: Subgroup-specific performance for 488 human-annotated data

Subgroup	# Note	TP Rate	TN Rate	FP Rate	FN Rate	Specificity
Age in Years						
0 - 44	66	1	1	0	0	1
45 - 60	75	1	0.91	0.09	0	0.91
61 - 70	97	0.64	0.96	0.04	0.36	0.96
≥ 71	250	0.74	0.97	0.03	0.26	0.97
Sex						
Male	245	0.72	0.96	0.04	0.28	0.96
Female	243	0.78	0.96	0.04	0.22	0.96
Race / Ethnicity						
White	327	0.73	0.96	0.04	0.27	0.96
Black	27	1	1	0	0	1
Other	134	0.82	0.96	0.04	0.18	0.96

Outcomes and Next Steps

- Following rigorous pre-production testing and institutional reviews across informatics, clinical leadership, and cybersecurity, the model was deployed in a pilot implementation across **four hospitals** in **December 2024**.
- Epic's SmartData elements** were leveraged to monitor model usage and track documentation identified as containing GoC discussion.
- Identified notes are surfaced directly to clinicians via the **Advance Care Planning (ACP) Summary Report**, which serves as the centralized clinical reference for ACP and GoC documentation.
- Domain experts conduct **continuous evaluation** of stratified random samples of model predictions.
- Our data scientists employ **meta-prompting** strategies **LLM-as-a-judge** methodologies to support **expert adjudication**, inform **prompt engineering**, enabling systematic **identification of error patterns**.
- Using traditional methods, an average of **1,908** Goals-of-Care discussions per week are captured across **52** acute care hospitals. Within **the four pilot sites**, the LLM identified an average additional **14** documented conversations per week.
- We have governance approval to launch the model across the entire Providence health system.

Figure 2: AI-powered GoC identification pipeline is integrated into Epic ACP, complementing existing clinical workflow. This image is a property of Epic Systems Corporation.

The screenshot shows the 'Chart Review' section of the Epic ACP interface. It includes fields for 'None', 'No', 'Unknown', and 'Yes' with a note: 'Goal of Care Note: 12/20/2024'. Below this, there are sections for 'Health Care Agents' (no agents listed), 'Advance Directive Documents (Scanned)' (document type: Power of Attorney, status: Not Received, received on: 12/20/24, received by: [redacted]), 'Current Code Status' (status: Not on file), and 'Notes' (date of service: 12/20/24 1655, author: [redacted], author type: Physician, status: Cosign Needed, note type: Goals of Care, date: 12/20/24 1439, author: [redacted], author type: Physician, status: Cosign Needed, note type: Progress Notes).