

The AI Agent in the Room: A New Frontier in Objective Medical Decision Making and Organ Allocation

Bima J. Hasjim*¹, Ghazal Azafar*^{2,3}, Divya Sharma⁴, Frank Lee⁵, Shilpa Raju, Ty S. Diwan⁵, Jed Gross⁶, Aman Sidhu², Hirohito Ichii¹, Rahul G. Krishnan⁷, Muhammad Mlamdani^{8,9}, Mamatha Bhat^{2,3,10}

1. Department of Surgery, University of California – Irvine, Orange, California, USA; 2. Transplant AI initiative, Ajmera Transplant Centre, University Health Network, University of Toronto, ON, Canada; 3. Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; 4. Department of Mathematics and Statistics at York University, North York, ON, Canada; 5. Division of Transplantation Surgery, Mayo Clinic College of Medicine, Rochester, MN; 6. Multi Organ Transplant Program, University Health Network, University of Toronto, Toronto, Canada; 7. Department of Computer Science, University of Toronto, Toronto, ON, Canada; 8. Pharmacy Department and Women's Health Program, University Health Network-Toronto General Hospital 9. Institute for Clinical Evaluative Sciences; 10. Division of Gastroenterology & Hepatology, Department of Medicine, University of Toronto

Background

Liver Transplantation (LT) is the only definitive treatment for end stage liver disease; access is explicitly rationed.

- Decided by the LT selection committee.
- Process of selecting candidates is prone to^{1,2}:
 - Inconsistency
 - Center-specific rules (written or unwritten)
 - External pressures
 - Hidden biases against select psychosocial profiles

AI agents: autonomous large language models that can perform tasks, learn, and collaborate for complex decision making.

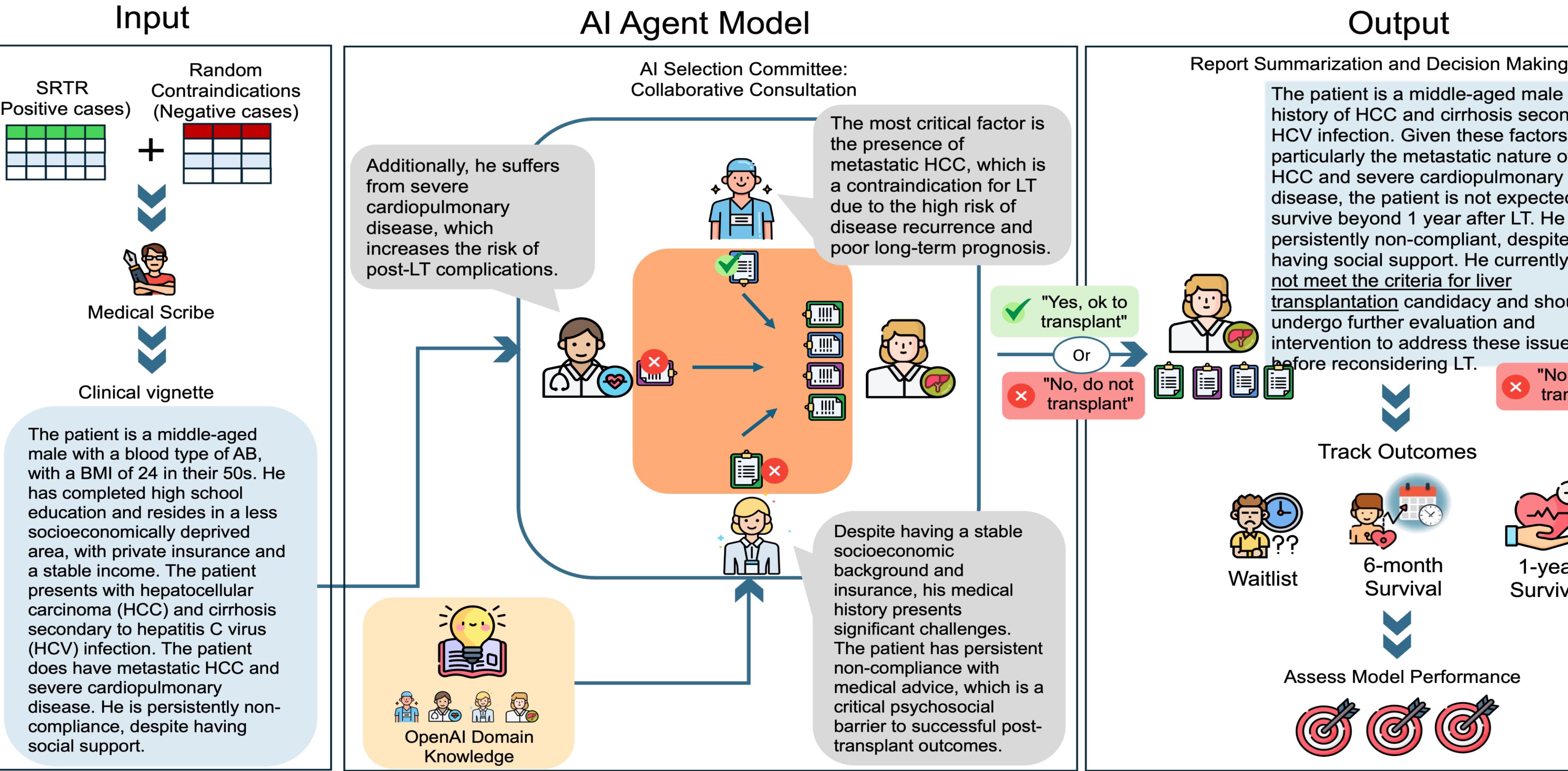
Research Objectives

Simulate the LT selection committee as a step towards objectivity in candidate selection.

AI Selection Committee (AI SC): select patients for LT if they believe LT will offer a survival benefit >1 year.

- Secondary aims:
 - Decide to transplant based on projected 6-month benefit, identifying absolute contraindications to LT
 - Interpretation of reports with cosine similarity to identify key characteristics in AI agent decision making

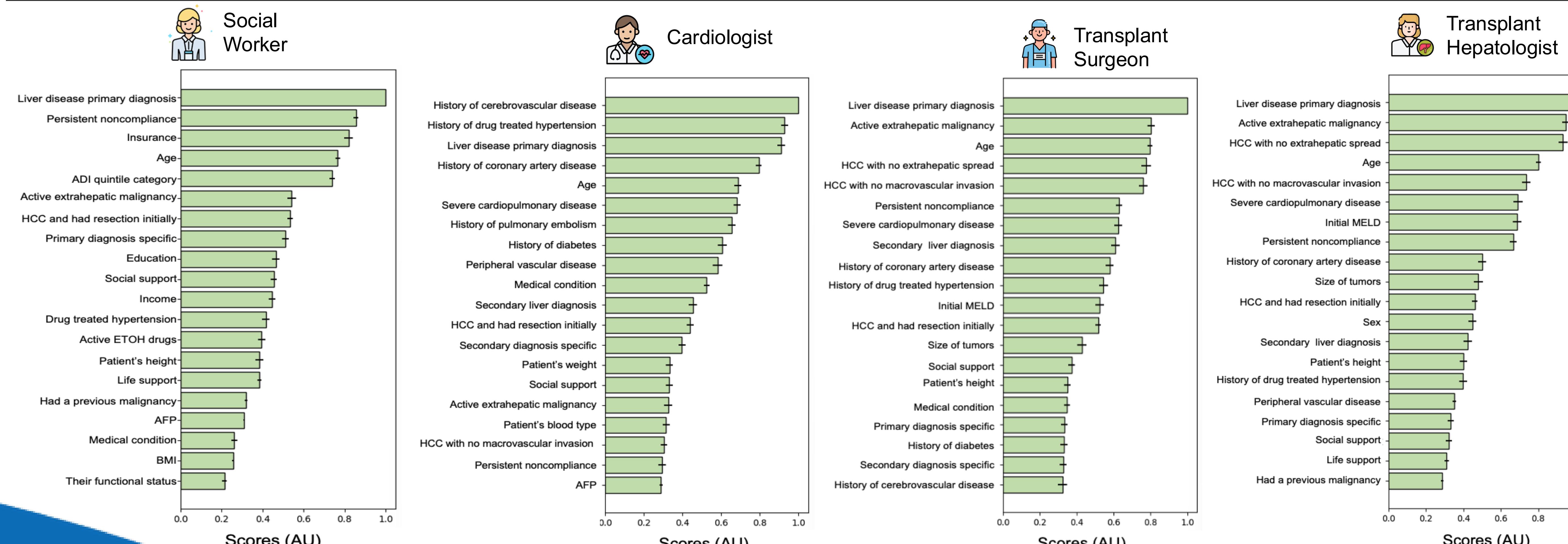
Methods


Scientific Registry of Transplant Recipients (SRTR)

- Adult (≥18-years-old) patients who received LT (2004-2023).
- Clinical endpoints/“benefit”: survival >6 months, >1 year; no contraindications to LT.
- Randomly generated cases with contraindications to transplant.

Model:

- GPT-4 from OpenAI.
- To minimize hallucinations:
 - Temperature set to 0.1.
 - Only used variables with <20% missingness.


AI Selection Committee Framework of Agents

AI Selection Committee Performance

	Accuracy (95%CI)	Sensitivity (95%CI)	Specificity (95%CI)	Precision (95%CI)	Recall (95%CI)	F1-score (95%CI)
LT Contraindications	98.19% (97.90%-98.44%)	1.00 (0.99-1.00)	0.91 (0.89-0.92)	0.98 (0.98-0.99)	1.00 (0.99-1.00)	0.99 (0.99-0.99)
6-month survival	94.88% (94.37%-95.29%)	1.00 (0.99-1.00)	0.75 (0.73-0.77)	0.94 (0.94-0.95)	1.00 (0.99-1.00)	0.97 (0.97-0.97)
1-year survival	92.00% (91.43%-92.58%)	1.00 (0.99-1.00)	0.66 (0.64-0.68)	0.91 (0.90-0.92)	1.00 (0.99-1.00)	0.95 (0.95-0.95)

Cosine Similarity Index

Results

- Of 8,412 patients, 83.6% were waitlisted and 16.4% had contraindications to LT.
- False Negative: HCC burden beyond Milan criteria was the most common reason for accepted patients who were declined (53.8% contraindications to LT; 53.8% 6-month survival; 60.9% 1-year survival).
- False Positive: most frequent cause of death were infections at 6-months (21.7%) and malignancy at 1-year (28.5%).

Conclusions

- Able to accurately waitlist LT candidates (98.2%) and project 6-month (94.8%) and 1-year (92.0%) post-LT survival.
- AI agents can be used to simulate the LT-SC and apply medical domain knowledge of various LT subspecialists to objectively identify patients who may benefit from LT.
- Proof-of-concept for maintaining objectivity in the LT selection process

References

1. Volk ML, Biggins SW, Huang MA, Argo CK, Fontana RJ, Anspach RR. Decision Making in Liver Transplant Selection Committees. *Ann Intern Med* 2011; **155**: 503-8.
2. Martin P, DiMartini A, Feng S, Brown R, Fallon M. Evaluation for liver transplantation in adults: 2013 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation: Martin et al. *Hepatology* 2014; **59**: 1144-65.

Acknowledgements

We acknowledge the support of the project from our patient partners, the Transplant AI initiative, and University Health Network (UHN) Foundation.