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2. Methods

4. Discussion

• Demographic and Health Survey (DHS) data from 38 SSA countries (2015–2022) were used to predict
HIVST willingness among 594,639 individuals aged 15–49.

• Variables included age, sex, marital status, education, wealth index, residence, and country.

• A convergent parallel mixed-methods design combined ML outputs and community interviews.

• CART and RF models were trained using repeated 5-fold cross-validation, 4 folds are used for training,
and 1 fold is used for testing.

• Subgroup ablation analysis assessed fairness across sex, residence, wealth, and education.

• Data were fully anonymized to protect privacy.

• Findings highlight the urgent need for equity-focused interventions
to improve HIVST uptake in SSA.

• ML models revealed marked socio-demographic disparities, with
lower uptake among rural, less-educated, and economically
disadvantaged groups, reflecting deep-rooted structural inequities,
which aligned with existing literature [3].

• Interventions should expand test kit access, use community
messengers, and address misinformation.

• Subgroup ablation confirmed consistent model performance across
demographics.

• Ethical risks were minimized through anonymization and population-
level analysis, promoting responsible, inclusive AI for public health
planning.

5. Conclusion

1. Introduction

• HIV self-testing (HIVST) uptake remains low among vulnerable populations (VPs) in Sub-Saharan Africa
(SSA) due to socio-economic and demographic inequalities [1].
• VPs—including youth, women, low-income groups, and marginalized communities—face systemic
barriers to care [2].
• Socio-demographic data improves intervention planning but poses ethical risks like profiling and
stigmatization.
• We applied machine learning (ML) Classification and Regression Tree (CART) and Random Forest (RF)
to predict HIVST willingness and guide equitable, community-level strategies.
• Our models bridge accessibility gaps while upholding privacy and ethical standards.

• This study demonstrates that ethical machine learning can
identify HIVST disparities and guide targeted interventions.
• Integrating outputs into community health efforts, through
NGOs, mHealth platforms, and outreach workers, can enable
equitable kit distribution, stigma reduction, and resource linkage to
advance health equity across SSA.
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3. Results 

• The RF model achieved 98.69% accuracy (Kappa 0.9653); CART achieved 97.42% (Kappa 0.9581)
(Figure 2).
• Key predictors: age (12,318), gender (146.6), wealth index (41.5), urban residence (36.6), Kenya
(272.1), Gambia (101.3), marital status "never in union" (558.9), and education level (27.8).
• Younger, urban, wealthier, and more educated individuals showed higher HIVST willingness; rural, low-
education, and disadvantaged groups had lower uptake.
• Subgroup ablation confirmed consistent performance: Accuracy 97.2–99.3%, Sensitivity 89.2–98.2%,
Specificity ≥99.8%, AUC 0.980–0.996 (Table 1, Figure 3).
They demonstrate that the high model accuracy is not primarily driven by correct predictions
in only one subgroup.


