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messengers, and address misinformation.
e Subgroup ablation confirmed consistent model performance across
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e Our models bridge accessibility gaps while upholding privacy and ethical standards.

Figure 1: Weighted Frequency and Percent by Country
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3. Results

e The RF model achieved 98.69%b accuracy (Kappa 0.9653); CART achieved 97.42% (Kappa 0.9581)
(Figure 2).

o Key predictors: age (12,318), gender (146.6), wealth index (41.5), urban residence (36.6), Kenya
(272.1), Gambia (101.3), marital status "never in union” (558.9), and education level (27.8).

e Younger, urban, wealthier, and more educated individuals showed higher HIVST willingness; rural, low-

education, and disadvantaged groups had lower uptake.

e Subgroup ablation confirmed consistent performance: Accuracy 97.2-99.3%, Sensitivity 89.2—98.2%,
Specificity 299.8%, AUC 0.980-0.996 (Table 1, Figure 3).

They demonstrate that the high model accuracy is not primarily driven by correct predictions
in only one subgroup.
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Figure 2. Comparison of AUC-ROC Curves for CART and RF Models

Stratified by Sex, Residence, Wealth Index, and Education
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Education = Higher (AUC = 0.993)
" Education = No education (AUC = 0.98)
* Education = Primary (AUC = 0.989)
Education = Secondary (AUC = 0.994)
Residence = Rural (AUC = 0.989)
Residence = Urban (AUC = 0.995)
Sex = Female (AUC = 0.996)
Sex = Male (AUC = 0.985)
Wealth_index = Middle (AUC = 0.993)
Wealth_index = Poorer/Poorest (AUC = 0.985)
* Wealth_index = Richer/Richest (AUC = 0.994)
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Figure 3: ROC Curves by Subgroup
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