DEEP LEARNING ALGORITHMS DERIVED FROM WEARABLE DEVICE

METRICS PREDICT FUTURE INFLAMMATORY BOWEL DISEASE FLARES
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INTRODUCTION METHODS

* [Inflammatory bowel disease (IBD) Is a chronic OUTCOME Definition (Y)

Inflammatory disease of the gastrointestinal « Symptom status was defined by daily PRO-2
tract. Flares are common and unpredictable, surveys (asymptomatic; PRO-2 CD < 8; PRO-2
presenting significant challenges for proactive UC < 1 with rectal bleeding score = 0, stool
disease management. frequency score < 1).

« Current monitoring approaches, including blood < A symptomatic flare was defined as = 2
and stool biomarkers, imaging, and symptomatic days in a 7-day period.
colonoscopy, are invasive, episodic, and  [Inflammatory flares were defined as a C-reactive
typically employed only after symptoms protein > 5mg/L, sedimentation rate > 30mm/hr, or
emerge. a fecal calprotectin > 150ug/g.

* Wearable devices offer a non-invasive, passive
means of capturing continuous physiological MODELS
signals that may correlate with underlying IBD * Deep learning algorithms, including long short-
inflammation.-3 (i.e., COVID-19%) term memory (LSTM) networks® and Transformer

models®, were applied.
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* The models were trained using binary focal cross-
entropy loss’ with the Adam optimizers3.

- The IBD Forecast study is a prospective  The r_node_ls assess the predictive L_Jtility of th_ese
cohort study enrolling adults (= 18 years of physiological metrics for a composite endpoint of
age) in the United States with IBD who is symptoma_tlc or inflammatory flares up to 8 weeks
willing to: before their onset.

(1) Use a commercially available wearable
device (Apple Watch)
(2) Download our custom ehive app

RESULTS

« Atotal of 140 participants were enrolled and
followed for an average of 7 months.

Table 1. Baseline demographic information.

Crohn’s Disease (CD) Ulcerative Colitis (UC) Overall (N=140)

(N=77) (N=63)
Age, years (SD) 39.2 (13.7) 39.9 (12.6) 39.5 (13.2)
Sex, female (%) 51 (66.2) 36 (57.1) 87 (62.1)
Race (%)
Asian 2 (2.6) 5 (7.9) 7 (5.0)
Black 3(3.9) 2 (3.2) 5 (3.6)
- Native-American 1(1.3) 1(1.6) 2(1.4)
(3) Complete daily symptom assessments —— S S e
using Patient-Reported Outcome-2 (PRO-2) Ethnicity (%)
Hispanic 5 (6.5) 4 (6.3) 9 (6.4)
— Not Hispanic 72 (93.5) 57 (90.5) 129 (92.1)
Smoking (%)
Current 2 (2.6) 2 (3.2) 4 (2.9)
Never 61 (79.2) 45 (71.4) 106 (75.7)
Past 14 (18.2) 16 (25.4) 30 (21.4)

* Using the physiological metrics from the Apple
Watch, both the Transformer model (AUC 0.83;
= Sensitivity 0.78; Specificity 0.68; AUPRC 0.31;
< 2 F1-score 0.28) and LSTM model (AUC 0.82,;

(4) Followed for up to 18 months. Sensitivity 0.80; Specificity 0.66; AUPRC 0.33;
F1-score 0.27) predicted inflammatory and

INPUT Definition: Predictors (X) symptomatic flares up to 8 weeks in advance.

* Apple Watch metrics, such as heart rate (HR), « Peak AUC performance in the testing set for the
heart rate variability (HRV), and oxygen Transformer model was observed 35 days before
saturation (Sp0O2), were collected and flares (AUC 0.83; Sensitivity 0.78; Specificity 0.68;
iIncluded in the deep learning model. AUPRC 0.31; F1-score 0.28).
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RESULTS

Figure 1. Performance metrics for LSTM and Transformer
deep learning models in predicting IBD flares up to 8
weeks before flare occurrence. Dashed lines denote the
training set results, while solid lines denote the testing set
results. Pink represents LSTM model and blue represents

Transformer model.
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* The models were established with a maximum
sensitivity of =2 0.90 and specificity of 2 0.80 in
the training set.
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« Both models demonstrated strong predictive
performance, with Transformer models
outperforming LSTM models.

CONCLUSIONS

 Longitudinally collected physiological metrics
from wearable devices successfully predict IBD
flares up to 8 weeks in advance.

* These findings highlight the potential of
wearable devices to be used for proactive
disease management.
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