SAIL Poster Session | MAY 10 / DAY 2

SAIL

4:30-5:15pm Odd numbered posters

5:15-6:00pm Even numbered posters

#	GROUP	POSTER TITLE
1	Deploying Al in Healthcare	Characterizing the impact of dataset shift on a precision public health model during the COVID-19 pandemic
2		Fostering the translation of AI to the clinic by building a physiological data streaming system
3		Complications arising from real-world usage of machine learning models in healthcare settings
4		APLUS: A python library for usefulness simulations of machine learning models in healthcare
5		Deployment and implementation of a multi-service surgical case length prediction model
6	Tools for Health Systems	Decision-aware learning for optimizing health supply chains
7		Assisting care managers by highlighting salient snippets in clinical notes
8		A distillated named entity recognition model based FLERT to extract symptoms, diagnosis and treatment from physician-patient dialogue on edge
9		Safe and reliable transport of prediction models to new healthcare settings without the need to collect new labeled data
10	Disease Diagnosis	Deep learning for diagnosing patients with rare genetic diseases
11		Simple models detect low ejection faction from the electrocardiogram almost as well as deep learning
12		PrimaryGleasonBERT: A generalizable transformer-based model to predict primary gleason scores from prostate cancer reports with external validation
13		Detection of left ventricular systolic dysfunction from electrocardiographic images: development and multi-institution federated validation of an interoperable deep learning model
14		Implementation of a machine learning-based learning health system for reducing intensive care unit 48h readmission—preliminary results and framework
15		Development and validation of machine and deep learning classifiers for monkeypox
16	Evaluation and Clinical Trials	Effectiveness of CONSORT-AI reporting guidelines for clinical trials Involving artificial intelligence: systematic review of randomised controlled trials
17		Observer-level performance should be measured when evaluating machine learning models for healthcare
18		Has machine learning made a difference yet? A retrospective analysis of in-hospital mortality prediction
19		Ignore, Trust, or Negotiate: Understanding clinician acceptance of AI-based treatment recommendations for sepsis

#	GROUP	POSTER TITLE
20	Diversity and Fairness	Evaluating a machine learning model of inpatient clinical deterioration for bias on sociodemographic factors
21		Insights from the STANDING together delphi consensus study: building STANdards for data Diversity, INclusivity and Generalisability
22		Intersectional consequences of marginal fairness
23		Semi-supervised learning reveals widespread demographic and clinical structure in routine blood laboratory data
24		Are automated alerts helping some patients and harming others?
25	Chronic Disease Management	Prediction of the risk of adverse clinical outcomes with machine learning techniques in patients with chronic noncommunicable diseases
26		Identification system for preventing the treatment of plurimetabolic patients using electronic medical records
27		Empowering clinicians to manage chronic-comorbid conditions by predicting adverse outcomes with transparent AI at the point of care
28		DETECT: Feature extraction algorithm for patient disease trajectory modeling in electronic health records
29		SurvLatent ODE: A neural ODE based time-to-event model with competing risks for longitudinal data improves cancer-associated venous thromboembolism prediction
30	Generative Al	Improving dermatology classifiers across populations using images generated by large diffusion models
31		Generating openly-accessible synthetic clinical data using diffusion models
32		Improving radiology report generation systems by removing hallucinated references to non-existent priors
33		Multimodal image-text matching improves retrieval-based chest X-ray report generation
34	Medical Imaging	Utilizing image-graph contrastive pretraining to improve medical image encoding
35		Benefits of small-sample performance and interpretability using vision transformers for hydronephrosis prediction in postnatal ultrasound
36		Video pretraining advances 3D deep learning on chest CT tasks
37		Deep learning to identify high-risk candidates for lung cancer screening CT
38		Semi-automated RECIST measurements from CT images of any body part with deep learning

