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1 Introduction

Since the 1980s, medical experts have designed
and refined dozens of point-based scoring systems for
predicting critical care outcomes ranging from mor-
tality and length of hospital stay to sepsis and sep-
tic shock.' With significant advances in computa-
tional infrastructure, machine learning (ML) meth-
ods, and wide-spread adoption of electronic health
records (EHR), outcome prediction research under-
went rapid expansion from 2010-2020. Despite an
exponential increase in research volume and diver-
sity of methods, the overall range of reported model
performance for in-hospital mortality prediction has
surprisingly widened. Moreover, peak model per-
formance from research conducted within the past
5 years has shown only marginal improvement over
research conducted over 20 years ago. To assess the
progress of these new methods, we conducted a retro-
spective analysis from 1980-2022 of published sever-
ity score and ML models for in-hospital mortality
prediction.

2 Methods

We performed a systematic query of MED-
LINE for predictive outcome research from 1980-
2022. Published research was manually curated
and selected based on 3 search criterion: 1) in-
hospital mortality outcome models, 2) training data
using adult inpatients cohorts, 3) model performance
evaluation using an area under the receiver operat-
ing characteristic curve (AUROC, formerly the c-
statistic). Studies were then categorized by severity
score, and/or ML algorithm.

3 Results

From 2008 to 2014, adoption of electronic health
records (EHR) in American hospitals grew expo-
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Figure 1: Time-Series of US electronic health
record adoption and concurrent clinical outcome
prediction publications from 1980-2022. Electronic
health record (EHR) adoption data visualized from ref-
erence cited.(Abbreviations: United States of America,

Us)*

nentially from 9% to 96%. During this expansion,
the number of outcome prediction publications from
2008-2011 alone surpassed the sum total of the pre-
vious two-decades.

From the 14,465 manuscripts published from
1980-2022, a total of 66% (n=9,602) were identified
as mortality prediction studies. After filtering for
in-hospital mortality as the predicted outcome and
AUROC as the performance metric(s) reported, 77
publications were selected for further evaluation.

3.1 Severity Score Performance

The top performing severity score-based mod-
els from 1980-2000, 2000-2010, and 2010-2022 were
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Figure 2: In-Hospital Mortality Prediction with Severity Score Models. Severity score model performance for
predicting in-hospital mortality for adult inpatient encounters from 1985-2022. Abbreviations: Sequential Organ Failure
Score (SOFA), quick SOFA (gqSOFA), Systemic Inflammatory Response Syndrome (SIRS), Logistic Organ Dysfunction Score
(LODS), Simplified Acute Physiology Score (SAPS), Modified Early Warning Score (MEWS), National Early Warning Score
(NEWS), Mortality Prediction Model (MPM), Intensive Care National Audit and Research Center (ICNARC), Acute phys-

iological assessment and chronic health evaluation (APACHE).

the Acute Physiology and Chronic Health Evalua-
tion III (APACHE-III) score (AUROC range: 0.82-
0.90), the APACHE-IV score (AUROC: 0.88), and
New Early Warning (NEWS) score (AUROC range:
0.77-0.89), respectively for studies including >1000
patient records (Figure 2). Peak performance for
in-hospital mortality prediction using severity scores
was observed in 1999 (APACHE-III AUROC: 0.90;
Figure 2). We observed a marginal decrease in peak
performance (-0.02 AUROC) from the APACHE-III
scores (n=18 variables) to the APACHE-IV scores
(n=129 variables) despite an increase of 111 scoring
variables (Figure 2).1533

3.2 Machine Learning Performance

ML model performance for in-hospital mortality
prediction as binary outcome exhibited a wide range
in performance (AUROC range=0.57-0.95). Neural
network and random forest methods consistently ex-

hibited peak performance (AUROC: >0.90); how-

Data visualized from references cited.?2537

ever, traditional regression methods that utilized
novel data-types such as medical free-text and re-
gression coefficients from time-series laboratory mea-
surement trends as model variables had compara-
ble performance (Figure 3, Marafino et al, AUROC:
0.92). Significant differences in model performance
on derivation (AUROC: 0.95) and validation data
(AUROC: 0.81) were observed (Figure 3, Meyer et
al.).

4 Conclusion

This 40-year retrospective analysis of in-
hospital mortality prediction research revealed a
widening gap of reported ML performance but sig-
nificant improvement with utilization of medical free
text and time-series data as model variables.
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Figure 3: In-Hospital Mortality Prediction with Machine Learning Models. Machine learning model performance
for predicting in-hospital mortality for adult inpatient encounters (ICU and general admission) from 1990-2022. Specific
studies are high-lighted, with "Derivation" and "Validation" labels referring to study specific training/testing data and out-
of-sample validation data, respectively. "Free-Text" labels refer to newer machine learning studies that have incorporated
of these respective data-types as model features. Abbreviations: United States Veterans Association data (US-VA). Data

visualized was collected from references cited.22.29,31,36,38-83
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