


Deep learning using chest x-rays to identify high-risk candidates for lung cancer screening CT

Background					Results							
 Lung cancer screening (LCS) with CT reduces lung cancer death by 20-25% LCS eligibility is set by 2022 Centers for Medicare and Medicaid Services (CMS) / USPSTF criteria: 					Table 2: 6-year lung cancer rates by CXR-LC and 2022 CMS Eligibility across validation cohorts.							
						CMS E	ligible	CMS Ineligible		CMS Eligibility Unknown		
 Age 50-77 years 				Coho	ort	CXR-LC Eligible	CXR-LC Ineligible	CXR-LC Eligible	CXR-LC Ineligible	CXR-LC Eligible	CXR-LC Ineligible	
 ≥20 pack-year smoking history (packs per day x years of smoking) Currently smoking or quit within the past 15 years 				PLC	0	3.1% (43 / 1376)	1.6% (17 / 1092)	2.9% (22 / 750)	0.4% (9 / 2397)	-	_	
 In the US, ~5-10% of eligible persons are screened Automated electronic medical record (EMR) approaches may improve uptake, but pack-year input for CMS eligibility often not in the EMR 					Т	5.1% (172 / 3343)	1.6% (34 / 2150)	-	-	-	-	
Purpose					H ear rates)	2.2% (33 / 1520)	0.2% (1 / 452)	1.3% (20 / 1490)	0.3% (2 / 730)	1.7% (8 / 482)	0.0% (0 / 200)	
We tested whether an AI model (CXR-LC) can identify persons at high lung cancer risk using a chest x-ray image and basic data					8	8.5% (83 / 974)	2.8% (5 / 177)	3.3% (121 / 3703)	0.5% (7 / 1423)	2.5% (127 / 5177)	0.5% (18 / 3283)	
Model Development					From a routine chest x-ray image,			Implementation Pilot				
 Sex Age Value Lung Current Smoker Convolutional Conv					 CXR-LC identified persons at high risk of lung cancer, beyond the Medicare lung screening CT eligibility criteria, in 4 validation cohorts (>30k individuals). A pilot clinical trial will test whether CXR-LC-based EMR reminders can improve lung cancer screening CT participation. 							
Cohorts Table 1: Characteristics of model development and validation cohorts								 Control arm – no alerts, regardless of CXR-LC predicted risk Primary outcome is lung cancer screening CT within 6 months of PCP visit Create from Netl Academy of Medicine/18 Lond CRICO 				
	PLCO Development PLCO Validation NLST SN			SNUH (N=4874)	NUH MGB CXR-LC was tested in 4 cohorts with no			Grants from Natl Academy of Medicine/J&J and CRICO Conclusion				
Age, mean (SD), y	62.2 (5.3)	62.1 (5.3)	61.7 (5.0)	57.0 (6.0)	62.6 (6.8)	 PLCO, smokers 55-74 years of age, 10 US sites, 1993-2001 NLST (N=5,493); ≥30 pack-year 		A deep learning model, CXR-LC, can accurately estimate lung cancer risk using basic data available in the EMR across US and Korean validation cohorts and in subgroups defined by sex and race Publications				
Male Sex (%)	60.1	60.1	55.3	96.0	48.5							
Current Smoking (%)	19.3	20.2	49.6	29.0	26.8							
Self-Reported Race Asian Black White Other	3.7 6.2 87.2 2.8	3.5 6.3 87.1 3.0	0.7 4.1 94.2 1.0	100.0 - -	1.4 7.3 87.2 3.2	 smokers, 33 US sites, 2002-2004 SNUH (N=4874) health checkup smokers in Seoul 50-80 years MGB (N=14737), smokers 50-80 years and had an outpatient CXR in 1. Lu, MT*, Raghu, VK* et al. Deep learning using chest radiographs to identify high-risk smokers for lung cancer screening: Development and Validation of a Prediction Model. <u>Annals</u> <u>of Intern Med</u> 2020 2. Lee JH, et al. Deep learning to optimize candidate selection for lung cancer CT screening: Advancing the 2021 USPSTF Recommendations. <u>Radiology</u> 2022 					rediction Model. <u>Annals</u>	
Pack-years, mean (SD) 6-year lung cancer (%)	35.2 (29.0) 1.8	35.4 (29.0) 1.6	55.7 (23.5) 3.8	- 1.3	18.6 (23.5) 3.4		2013-2014. Data from the EMR 3. Raghu VK, et al. Validation of			of a deep learning-based model to predict lung cancer risk using ctronic medical record data. <i>JAMA Network Open</i> 2022		
				1.0								

Vineet K Raghu, PhD; Anika S Walia, BA; Aniket N Zinzuwadia, BA; Hugo Aerts, PhD; Inga T Lennes, MD, MBA; and Michael T Lu, MD, MPH Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA Program for Artificial Intelligence in Medicine, Brigham and Women's Hospital, Boston, MA

