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Problem
Sensitive patient information are usually restricted, thereby
limiting the access to data needed

to develop effective machine learning models.

What is Already Known

Generative Adversarial Networks (GANs) can produce
realistic synthetic surrogate clinical datasets, but suffer
mode collapse, which

significantly reduces the diversity and

consequently undermines the utility of the data.

What this Study Adds
Diffusion Probabilistic Model (DPM) is a

promising archetype of generative models that circumvents

the practical training challenges in GANs. However, DPMs
remain relatively

under-explored in the research community.

Our Study
1) Extends the DPM application to simulate
synthet longitudinal clinical data with

mixed-type variables;

2)

tested over 3 clinical conditions including

acute hypotension, sepsis, and
the ART for HIV;

3) validated the fidelity, the security, and
the utility our synthetic datasets;

and comparing the results with GAN-based SoTA.
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The concept of the DPM framework
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Methods
The DPM framework consists a

(

forward diffusion process to remove distinguishable features and a
reverse diffusion process to learn to recover data as if they were

sampled from the real database.

We employ U-Net as our backbone model to extract meaningful information from

noisy data while preserving its underlying structure.

The U-Net consists multiple layers of one-dimensional convolutional neural networks,

allowing the extraction of high-level features at various levels of resolution.
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Critical Findings
1) Overall, DPM-simulated datasets are more
realistic than GANSs

2) DPMs are easier to train than GANs

3) DPMs do not suffer from mode collapse

4) DPMs generate categorical/binary variables
with better representations

5) GANSs generate numeric variables with
lower bias (in both mean and variance)

6) GANs generate/sample synthetic data more
efficiently than DPMs

Future work

1) Design a DPM that generates less bias
In numeric variables
Conduct a large scale utility study on
the DPM-simulated dataset, to verify
that the synthetic dataset 1s capable of
substituting the ground truth for
developing logistic regression, random
forest, and deep learning algorithms
such as reinforcement learning
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See more results in our paper regarding
patient exposure risk and
synthetic dataset utility.
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