Are Electronic Alerts Helping Some Patients and Harming Others?

Benjamin D. Wissel, MD, PhD ${ }^{1}$, Zana Percy, BS ${ }^{2}$, Brett Beaulieu-Jones, PhD ${ }^{3,4}$, Isaac S. Kohane, MD, PhD³, Stuart L. Goldstein, MD ${ }^{5,6}$, Emrah Gecili, PhD ${ }^{5,7}$, Judith W. Dexheimer, PhD ${ }^{1,5,8}$

Cincinnati

Children's'
changing the outcome together

Background

- Automated, electronic alerts for acute kidney injury affect physician behavior (e.g., increase orders for intravenous fluids, urinalyses, and creatinine measurements).
- The effect of alerts on patient mortality in previous studies has varied; they may increase patients' mortality risk in some settings and decrease it in others.

Methods

- Objective: To understand the heterogeneous treatment effects of electronic alerts for acute kidney injury (AKI).
- Design: Secondary analysis of individual patient data from two randomized controlled trials. Data from the first trial (ELAIA-1) were used to predict the individualized effect of alerts on mortality based on patients' phenotype. Results were internally validated on a holdout dataset and externally validated using data from the second trial (UPenn). In addition, provider actions following alerts were examined as a possible explanation of how alerts impacted patient mortality.
- Setting: Seven hospitals in the Northeast region of the United States.
- Participants: 8,423 hospitalized patients with AKI.
- Intervention: Electronic alerts for AKI.
- Main Outcome Measure: Mortality within 14 days of randomization.

Results

 Figure 1. Unsuper $\mathrm{n}=6,030$ patients).

Step 3: Compare the observed mortality in patients who were predicted to benefit from an alert (iHR<1) against patients who were not predicted to benefit from an alert (iHR>1).

Discussion

- This secondary analysis of data from two randomized controlled trials ($\mathrm{n}=8,423$ patients) found that the effect of automated alerts on mortality depends on the patient's phenotype.
- Alerts were associated with increased risk of mortality in patients with low blood pressure and decreased the risk of mortality in patients with chronic heart failure.
- In one hospital, over a sevenmonth period, we estimated that 14 patient deaths may have been prevented by alerting patients who were predicted to benefit, and withholding alerts in patients who were not.
- This effect was likely mediated by providers actions in response to the alerts

Conclusions

- Alerts might influence providers to take actions that are harmful to the patient.
- Alerting systems should be rigorously evaluated to ensure safety and efficacy and potentially tailored to individual patients.

Funding

This work was partially supported by a grant from the National Institutes of Health (F31 NS115447) to Benjamin Wissel.

