# Are Electronic Alerts Helping Some Patients and Harming Others?

Benjamin D. Wissel, MD, PhD<sup>1</sup>, Zana Percy, BS<sup>2</sup>, Brett Beaulieu-Jones, PhD<sup>3,4</sup>, Isaac S. Kohane, MD, PhD<sup>3</sup>, Stuart L. Goldstein, MD<sup>5,6</sup>, Emrah Gecili, PhD<sup>5,7</sup>, Judith W. Dexheimer, PhD<sup>1,5,8</sup>

<sup>1</sup>Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; <sup>2</sup>Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; <sup>3</sup>Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; <sup>4</sup>Section of Biomedical Data Science, Department of Medicine, University of Chicago, Chicago, IL, USA; <sup>5</sup>Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; <sup>6</sup>Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; <sup>8</sup>Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; <sup>8</sup>Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; <sup>8</sup>Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; <sup>8</sup>Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; <sup>8</sup>Division of Emergency Medicine, Cincinnati, OH, USA; <sup>9</sup>Division of Emergency Medicine, Cincinnati, OH, USA; <sup>9</sup>



# Background

- Automated, electronic alerts for acute kidney injury affect physician behavior (e.g., increase orders for intravenous fluids, urinalyses, and creatinine measurements).
- The effect of alerts on patient mortality in previous studies has varied; they may increase patients' mortality risk in some settings and decrease it in others.

# Methods

- Objective: To understand the heterogeneous treatment effects of electronic alerts for acute kidney injury (AKI).
- **Design:** Secondary analysis of individual patient data from two randomized controlled trials. Data from the first trial (ELAIA-1) were used to predict the individualized effect of alerts on mortality based on patients' phenotype. Results were internally validated on a holdout dataset and externally validated using data from the second trial (UPenn). In addition, provider actions following alerts were examined as a possible explanation of how alerts impacted patient mortality.
- Setting: Seven hospitals in the Northeast region of the United States.
- Participants: 8,423 hospitalized patients with AKI.
- Intervention: Electronic alerts for AKI.
- Main Outcome Measure: Mortality within 14 days of randomization.



shown).

Impact of Feature on iHR

Figure 3. Feature importance.

#### **Discussion**

- This secondary analysis of data from two randomized controlled trials (n=8,423 patients) found that the effect of automated alerts on mortality depends on the patient's phenotype.
- Alerts were associated with increased risk of mortality in patients with low blood pressure and decreased the risk of mortality in patients with chronic heart failure.
- In one hospital, over a sevenmonth period, we estimated that 14 patient deaths may have been prevented by alerting patients who were predicted to benefit, and withholding alerts in patients who were not.
- This effect was likely mediated by providers actions in response to the alerts.

## Conclusions

- Alerts might influence providers to take actions that are harmful to the patient.
- Alerting systems should be rigorously evaluated to ensure safety and efficacy and potentially tailored to individual patients.

## **Funding**

This work was partially supported by a grant from the National Institutes of Health (F31 NS115447) to Benjamin Wissel.