Are Electronic Alerts Helping Some Patients and Harming Others?
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measurements). " phenotype.
« The effect of alerts on patient N | d Step 2: Estimate individualized hazard ratios (iHR) for « Alerts were associated with
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In patients with chronic heart
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were used to predict the Step 3: Compare the observed mortality in patients who | N |
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individualized effect of alerts on were predicted to benefit from an alert (iHR<1) against 1000%] a0 100.0%] + Alerts might influence providers to
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Figure 3. Feature importance.



