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Key points
• The effects of imposing fairness constraints on clinical predictive models are not well understood
• We conduct a large-scale empirical study to characterize the impact of imposing group fairness on measures of 

model performance and fairness
• We find that group fairness penalties generally

• Degrade model performance for all groups
• Introduce relative calibration errors that occurs across groups -- independent of changes in absolute 

calibration error
• Algorithmic fairness is incapable of auditing or correcting for causal quantities not captured by observational 

criteria
• Upstream biases due to the interaction of structural inequities with errors in problem formulation and 

measurement
• Downstream biases defined in terms of disparate impact of a model-guided intervention

• We encourage researchers to step outside of the algorithmic fairness frame and engage critically with the 
broader sociotechnical context of machine learning in healthcare
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Results

Age Group
Race and Ethnicity

Cohort construction Model training and evaluation

Hospital Mortality
Prolonged Length of Stay

Attribute: Sex

Female

Male

Attribute: Race and Ethnicity
Asian
Black

Hispanic
Other
White

Attribute: Age Group
[18-30)
[30-45)
[45-55)
[55-65)
[65-75)
[75-90)

30-Day Readmission

Performance
Metrics

Type of penalty

Fairness
Metrics

Sex

STARR
STARR

STARR

• Apply regularized learning objectives to impose conditional 
prediction parity

• Evaluate
• Conditional prediction parity
• Relative calibration error
• Cross group ranking performance (xAUC)
• Standard performance measures (AUROC, AP, etc)

• Repeat in a grid of 25 experimental conditions across 
datasets (STARR, Optum Clinformatics Data Mart, MIMIC-
III), clinical outcomes, and sensitive attributes

Methods

Performance
Metrics

Fairness 
Metrics

Alternative Algorithmic Approaches for Reliable 
and Fair Clinical Risk Prediction

Key points
• If group-level model performance is a suitable proxy for benefit, then the algorithmic fairness 

approaches that we study generally introduce harm
• Always critically evaluate this assumption in the context of the assumptions underlying problem 

formulation, measurement, and intended use of the intervention
• Increasing the effective size and diversity of datasets via pooling across siloes may improve model 

performance for underrepresented groups without the trade-offs of algorithmic fairness objectives
• Key barriers to pooling data across siloes

• Ethical and legal necessity of respecting privacy constraints
• Distribution shift and heterogeneity limit transfer across siloes

• Hypothesis: We may improve group-level model performance while achieving notions of algorithmic 
fairness by composing
• Approaches to addressing privacy constraints in learning across siloes, such as federated and 

differentially private learning
• Approaches to learning robust and transferable models
• Approaches to imposing algorithmic fairness

• Invariance provides a common framework for fairness and distribution shift
• We have a common algorithmic toolbox for these problems
• Empirical characterization of trade-offs among fairness criteria informs our empirical 

understanding of invariance as a tool for addressing distribution shift
• Proposal and on-going work: Assessing the above hypothesis in several settings:

• Learning robust and transferable ASCVD risk scores in multi-center EHR and large national claims 
databases without data sharing, partitioning by state, zip code, and care site

• Benchmarking with mortality and length of stay outcomes in the eICU Collaborative Research DB

Algorithmic Fairness Distribution Shift

Invariance as a Common Framework


