### **Predicting Preventable Hospital Readmissions with Causal Machine** Learning



PRESENTER: **Ben Marafino, Stanford University** 

#### BACKGROUND

Many systems-level and population health management interventions rely on predictive algorithms to identify and prioritize patients at highest risk.

However, these approaches fail to account for potential risk-based heterogeneous treatment effects (or rHTE) which can be substantial in some settings.

#### METHODS

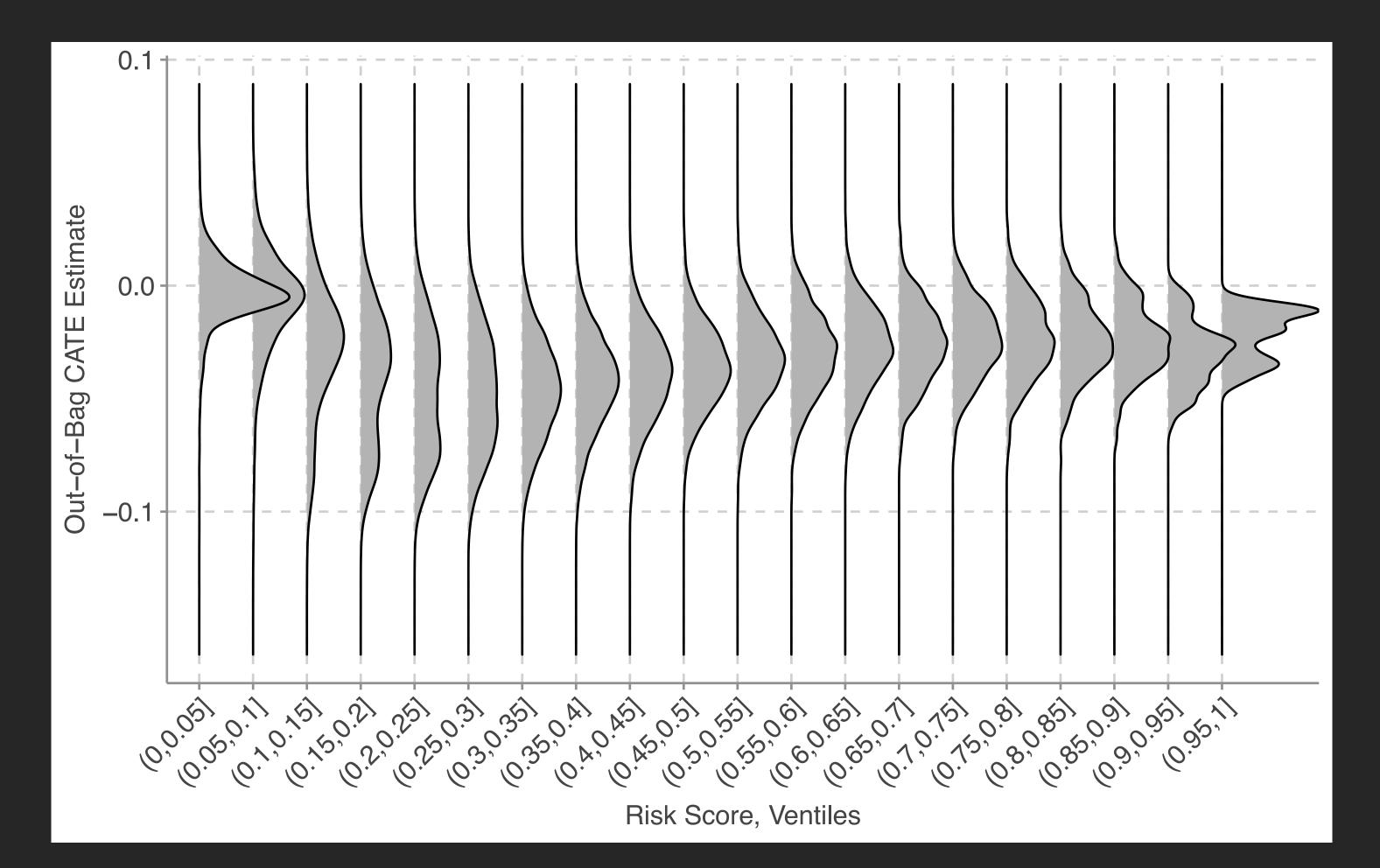
- Data from before and after deployment of readmission prevention intervention linked to EHR-based predictive algorithm (*n* = 1,539,285 hospital discharges, 2010-2018)
- Goal: Characterize extent of rHTEs and estimate marginal gains wit.
- Causal forest analysis: Estimate conditional average treatment effects (CATEs) using causal forest on set of patient-level features

#### RESULTS

- Substantial rHTE (see figure) with moderate and lower-risk patients experiencing largest treatment effects compared to those at higher risk.
- Notional estimates: possible to prevent ~4x as many readmissions annually with CATEbased vs. risk-based targeting
- Predicted CATEs were generally wellcalibrated

For more details, see our preprint: https://arxiv.org/abs/2005.14409

# **Risk-treatment effect mismatch** may blunt the impacts of clinical deployments of predictive algorithmlinked interventions.



$$\begin{array}{c}
0.1 \\
0.0 \\
-0.1 \\
0.0 \\
0.0 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0$$



| Acute CVD                    | AMI                                   | CAP                             | Cardiac arrest           | CHF                            |
|------------------------------|---------------------------------------|---------------------------------|--------------------------|--------------------------------|
|                              |                                       |                                 |                          |                                |
| ma; stupor; and brain damage | Endocrine & related conditions        | Fluid and electrolyte disorders | GI bleed                 | Hematologic conditions         |
| Highly malignant cancer      | Hip fracture                          | III defined signs and symptoms  | Less severe cancer       | Liver and pancreatic disorders |
| Ronal failure (all)          | Aiscellaneous neurological condition: |                                 | Other cardiac conditions | Other infectious conditions    |
| Renal failure (all)          | Residual codes                        | Sepsis                          |                          |                                |

## **Conclusions and** Recommendations

- Practitioners should be aware of risk-treatment effect **mismatch** in deployments of predictive-algorithm linked interventions.
- In particular, prioritizing patients at highest risk may not yield best ROI in terms of clinical impact.
- Instead, should attempt to prioritize based on estimated treatment effects.
- But to do so, may need to rethink deployment processes & practices.
- Pilot RCTs are one starting point for obtaining these estimates
- Alternatively: bespoke trial designs which estimate rHTE directly (under development by our team)
- Ben Marafino, Alejandro Schuler, Vincent Liu, Gabriel Escobar, Mike Baiocchi

**Stanford** MEDICINE

DIVISION OF RESEARCH Northern California

Kaiser Permanente Research