

Contributions

- We show the state-of-the-art (SOTA) deep learning classifiers trained to yield diagnostic labels from X-ray images display systematic bias over patient's sex, age, race and insurance type (as a proxy of socialeconomic status).
- We quantify biases by evaluating the TPR disparity differences in true positive rates (TPR) among different protected attributes.
- As clinical models move from papers to products, we encourage clinical decision makers to carefully audit for algorithmic disparities prior to deployment.

The paper and link to the code are available in: https://arxiv.org/abs/2003.00827 Corresponding email: laleh@cs.toronto.edu

Methods

Classification performance on X-ray diagnoses

Dataset: MIMIC-CXR (CXR), CheXpert (CXP), Chest-Xray8 (NIH) and all of those multi-site aggregation (ALL). The AUC for chest X-ray classifiers trained on CXP, CXR, NIH, and ALL averaged over 5 runs (different seeds) $\pm 95\%$ Cl.

5	1	, ,	0	N	
Label (Abbr.)	CXR	СХР	NIH	ALL	
Airspace Opacity (AO)	0.782 ± 0.002	0.747 ± 0.001			
Atelectasis (A)	0.837 ± 0.001	0.717 ± 0.002	0.814 ± 0.004	0.808 ± 0.001	
Cardiomegaly (Cd)	0.828 ± 0.002	0.855 ± 0.003	0.915 ± 0.002	0.856 ± 0.001	
Consolidation (Co)	0.844 ± 0.001	0.734 ± 0.004	0.801 ± 0.005	0.805 ± 0.001	
Edema (Ed)	0.904 ± 0.002	0.849 ± 0.001	0.915 ± 0.003	0.898 ± 0.001	
Effusion (Ef)	0.933 ± 0.001	0.885 ± 0.001	0.875 ± 0.002	0.922 ± 0.001	
Emphysema (Em)			0.897 ± 0.002		
Enlarged Card (EC)	0.757 ± 0.003	0.668 ± 0.005			
Fibrosis			0.788 ± 0.007		
Fracture (Fr)	0.718 ± 0.007	0.790 ± 0.006			
Hernia (H)			0.978 ± 0.004		
Infiltration (In)			0.717 ± 0.004		
Lung Lesion (LL)	0.772 ± 0.006	0.780 ± 0.005			
Mas (M)			0.829 ± 0.006		
Nodule (N)			0.779 ± 0.006		
No Finding (NF)	0.868 ± 0.001	0.885 ± 0.001		0.890 ± 0.000	
Pleural Thickening (PT)			0.813 ± 0.006		
Pleural Other (PO)	0.848 ± 0.003	0.795 ± 0.004			
Pneumonia (Pa)	0.748 ± 0.005	0.777 ± 0.003	0.759 ± 0.012	0.784 ± 0.001	
^{>} neumothorax (Px)	0.903 ± 0.002	0.893 ± 0.002	0.879 ± 0.005	0.904 ± 0.002	
Support Devices (SD)	0.927 ± 0.001	0.898 ± 0.001			
Average	$\textbf{0.834} \pm \textbf{0.001}$	$0.805{\pm}0.001$	$\textbf{0.840}\pm\textbf{0.001}$	$\textbf{0.859}\pm\textbf{0.001}$	

Do deep learning chest X-ray classifiers discriminate?

Laleh Seyyed-Kalantari¹, Guanxiong Liu¹, Matthew McDermott², Irene Chen², Marzyeh Ghassemi¹

¹University of Toronto, Vector Institute ² Massachusetts Institute of Technology

Disparities overview over attributes and datasets, in the following table shows the average cross-label gap between the least and most favorable subgroup's TPR disparities. The most frequent "Unfavorable" and "Favorable" subgroups are the ones that experience TPRs disparities below or above the zero gap line frequently.

Disparities exist

We demonstrate that TPR disparities exist in the SOTA classifiers in all datasets, for all clinical tasks, and all protected attributes, sex, age, race and insurance type.

As an illustrative example we show the insurance type sorted TPR disparities distribution in MIMIC-CXR dataset. The scatter plot's circle area is proportional to the membership. In a fair setting disparities are zero. Negative and positive disparities denote bias against and in favor of a subgroup.

Attribiute	Dataset	aset Average Cross-Label Gap		Untavorable	Favorable	
		Gap	Lowest	Greatest		
Sex	ALL	0.045	Ef:0.001	Pa:0.105	Female $(4/7)$	Male (4/7)
	CXP	0.062	Ed:0.000	Co:0.139	Female $(7/13)$	Male $(7/13)$
	CXR	0.072	Ed:0.011	EC.:0.151	Female (10/13)	Male $(10/13)$
	NIH	0.190	M:0.001	Cd:0.393	Female $(8/14)$	Male $(8/14)$
Age	ALL	0.215	Ef:0.115	NF:0.444	0-20 (5/7)	40-60,60-80(5/7)
	CXR	0.245	SD:0.091	Cd:0.440	0-20, 20-40 (7/13)	60-80 (10/13)
	CXP	0.270	SD:0.084	NF:0.604	0-20, 20-40, 80- (7/13)	40-60 (8/13)
	NIH	0.413	In:0.188	Em:1.00	60-80 (7/14)	20-40 (9/14)
Race	CXR	0.226	NF:0.119	Pa:0.440	Hispanic $(9/13)$	White (9/13)
Insurance	CXR	0.100	SD:0.021	PO:0.190	Medicaid $(10/13)$	Other $(10/13)$
	•	1				

e multi-source dataset corresponds to the smallest disparities, suggesting one way to reduce bias.

isparity in proportion to membership

Pearson correlation coefficient between the TPR disparities and patients proportion per label across all groups/datasets shows that TPR disparities are not often significantly correlated with a subgroup's portional disease burden.

cknowledgment

acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC, funding number PDF-516984), osoft Research, CIFAR, NSERC Discovery Grant, and high performance computing platforms of Vector Institute. We also thank Dr. Alistair son, Dr. Errol Colak and Grey Kuling for productive discussions.

