Medication Regimen Extraction From Clinical Conversations

Sai P. Selvaraj, Sandeep Konam {prabhakarsai, san}abridge.com

Motivation

- Patients forget 40-80% of the medical information provided by healthcare practitioner immediately [1]
- Clinicians spend up to 49.2% of their overall time on EHR causing burnout [2]
- Automatically extracting information from medical conversations can:
 - Improve patient's recall
 - Help patients follow through with their care plan

Experiments

- To address data shortage and improve the model performance, we:
 - Investigated different high-performance contextual embeddings (ELMO, BERT and ClinicalBERT)
 - Pretrained model's encoders on clinical summarization task using the medical summaries in our dataset
- Baselines:

abridge

• Reduce the documentation burden for doctors

Task

- Medication Regimen tags (MR tags) extraction from Doctor-Patient conversations
- MR tags:
 - *Medication* name
 - Medication *Dosage*
 - Medication *Frequency*

(Timestamp) Part of Transcript	Summary	Medication	Dosage	Frequency
 (1028.3s) So, let's, I'm going to have them increase the mg, uh, Coumadin level, so that, uh, like I said, the pulmonary embolism doesn't get worse here. (1044.9s) Yeah. (1045.2s) Yeah. (1045.4s) Increase it to three point five in the morning and and before bed 	Increase Coumadin to 3.5 mg to prevent pulmonary embolism from getting bigger	Coumadin	3.5 mg	Twice a day

Table 1: Example of our annotations grounded to the transcript segment.

Dataset

• De-identified, fully-consented 6,693 real doctor-patient conversations

- Rule-based baselines
- Using embeddings learned from scratch
- Input Part of Transcript segmented:
 - Automatically using heuristics (AS)
 - Using human annotations (HS)

Results

- Human written transcripts:
 - ELMo with MD QA PGNet and BERT with QA PGNet performed the best
 - Pretraining on the summarization task improves the performance
- Automatic Segmentation causes a significant performance drop
 - \circ Row 1 vs Row 2 in Table 2
- The models perform reasonably well in rare cases when the "Part of Transcript" has:
 - Multiple medication mentions
 - Multiple dosage mentions
 - Dosage mentioned before medication

Transcripte	Models	Dosage	Frequency
Transcripts	Models	F1	F1
HW	BERT + QA PGNet (PT)	85.69	49.25
with HS	ELMo + MD QA PGNet (PT)	85.79	43.99
HW	BERT + QA PGNet (PT)	75.43	41.62
with AS	ELMo + MD QA PGNet (PT)	75.71	37.83
G-STT	BERT + QA PGNet (PT)	70.51	39.90
with AS	ELMo + MD QA PGNet (PT)	71.75	40.13
IBM-STT	BERT + QA PGNet (PT)	73.93	30.90
with AS	ELMo + MD QA PGNet (PT)	78.93	36.58

- Recorded in a clinical setting using distant microphones of varying quality
- Transcribed by medical experts
- Annotated (and grounded) by expert annotators with:
 - Summaries
 - MR tags

Approach

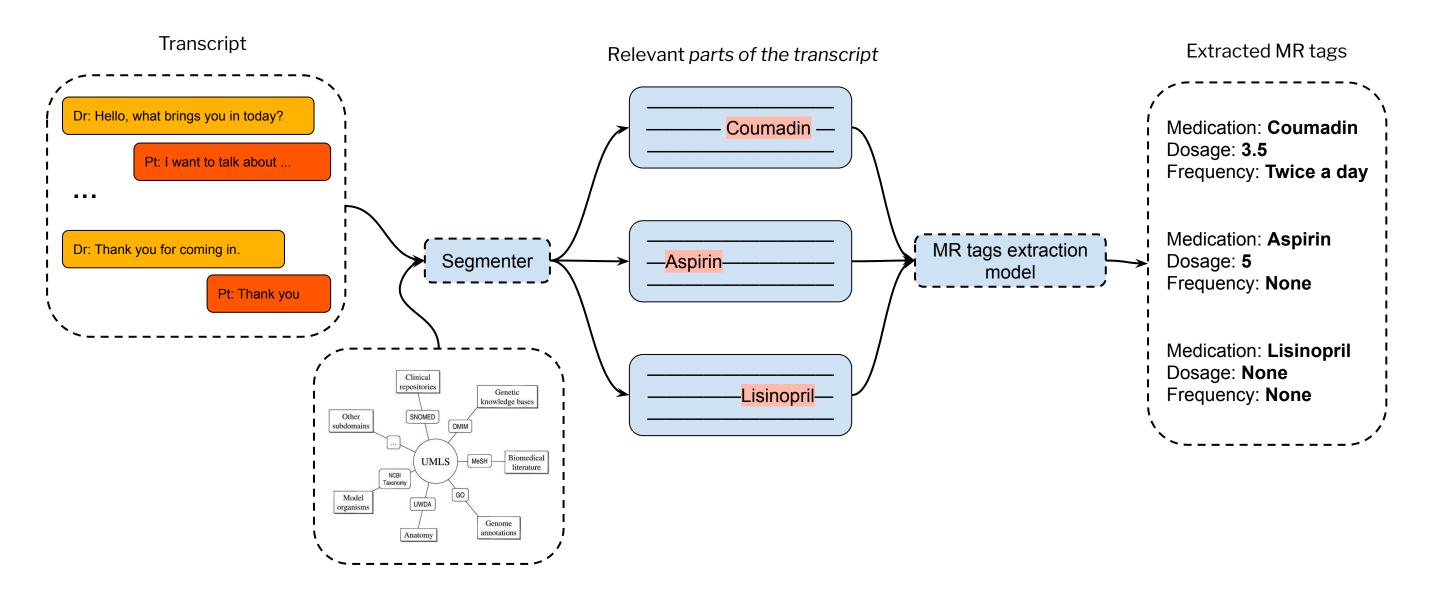


Figure 1: Overview of our medication regimen extraction pipeline

- We identify medications in a conversation using string matching with UMLS ontology [3]
- For each medication occurrence, Part of the Transcript is identified
- We extract the medication's *dosage* and *frequency* using a model in one of the following

Table 2: ROUGE-1 scores of the best performing models on the ASR (Google: G-STT and IBM: IBM-STT) and human-written transcripts (HW) on the test dataset. PT: using pretrained encoder; HS: Human segmentation; AS: Auto segmentation

Integrating with commercial Automatic Speech Recognition (ASR) systems

- We evaluate our best performing models on the ASR APIs offered by:
 - $\circ~$ Google (G-STT) Row 3 in Table 2
 - IBM (IBM-STT) Row 4 in Table 2
- We find that the models are robust to ASR errors with only a small drop in performance
 - Row 2 vs Row 3, 4 in Table 2
- Our best model can correctly extract the *dosage* for 71.75% and *frequency* for 73.58% of the medications with Google Speech-To-Text transcripts

Deployment and Conclusion

 We investigated and developed different frameworks for MR tags extraction from Doctor-Patient conversations

frameworks:

- Question Answering framework (QA PGNet):
 - Pointer-generator networks [4]
 - Augmented with Co-Attentions [5] to attend on the questions
 - Input: "what is the dosage of Coumadin?"; Part of the Transcript
 Output: 3.5
- Question Answering + Information Extraction frameworks (MD QA PGNet):
 - Pointer-generator networks
 - With multi-decoder to output *dosage* and *frequency* separately
 - Input: Part of the Transcript
 - Output: Dosage decoder: 3.5; Frequency decoder: Twice a day

For more details on the work please refer to:

- Sai Prabhakar Pandi Selvaraj and Sandeep Konam. 2020. <u>Medication regimen extraction from</u> <u>clinical conversations</u>. In International Workshop on Health Intelligence (W3PHIAI 2020), New York, USA
- Dhruvesh Patel, Sandeep Konam and Sai Prabhakar Pandi Selvaraj. 2020. <u>Weakly Supervised</u> <u>Medication Regimen Extraction from Medical Conversations</u>. In Proceedings of the Clinical Natural Language Processing Workshop, EMNLP, 2020

- The developed models work well in rare cases and on commercial ASR transcripts
- The pipelines presented here have been deployed to over 50,000 users via our mobile app [6]. So far, we extracted and presented cumulatively 93172 medications to users. In addition, they were also presented with definitions for 41478 medications.

References

[1] Lisa C. Mcguire. 1996. Remembering what the doctor said: Organization and adults' memory for medical information. Experimental Aging Research, 22:403–428.
[2] Christine Sinsky, Lacey Colligan, Ling Li, Mirela Prgomet, Sam Reynolds, Lindsey Goeders, Johanna Westbrook, Michael Tutty, and George Blike. 2016. Allocation of physician time in ambulatory practice: a time and motion study in 4 specialties. Annals of internal medicine, 165(11):753–760.
[3] Bodenreider, Olivier. "The unified medical language system (UMLS): integrating biomedical terminology." Nucleic acids research 32.suppl_1 (2004): D267-D270.
[4] See A, Liu PJ, Manning CD (2017) Get to the point: Summarization with pointergenerator networks. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp 1073–1083
[5] Xiong C, Zhong V, Socher R (2016) Dynamic coattention networks for question answering. arXiv preprint arXiv:161101604
[6] https://www.abridge.com