



Bret Nestor<sup>\*,0,1</sup>, Matthew B. A. McDermott<sup>\*,2</sup>, Willie Boag<sup>2</sup>, Gabriela Berner<sup>3</sup>, Tristan Naumann<sup>4</sup>, Michael C. Hughes<sup>5</sup>, Anna Goldenberg<sup>0,1,6</sup>, Marzyeh Ghassemi<sup>0,1</sup>

\*Equal Contribution <sup>0</sup> University of Toronto, <sup>1</sup> Vector Institute, <sup>2</sup> Massachusetts Institute of Technology, <sup>3</sup>Harvard University, <sup>4</sup>Microsoft Research, <sup>5</sup>Tufts University, <sup>6</sup>Hospital for Sick Children

# Is Machine Learning Resilient to Clinical Practice Change?

## Models trained on de-identified, date-obscured data may not endure as care practice evolves

- De-identification neglects concept drift
- Adaptive computation with explicit control over tradeoff between speed and numerical precision.

# **Illustration of Concept Drift in Clinical Practice**

Values of the collected data changes (Underlying physiology of humans does not)



Frequency of data collection changes



## **Experiments**

We established a standard pipeline that selects a representation then trains any model on a classification task.

![](_page_0_Figure_15.jpeg)

We train these models **only** using retrospective data and test on prospective data. To do this we use 3 feasible training regimes.

![](_page_0_Figure_17.jpeg)

# Feature Robustness in Non-stationary Health Records: Caveats to Deployable Model Performance in Common Clinical Machine Learning Tasks

# Model Performance Under Practical Training Regimes

## Task 1: In ICU Mortality

First, we show the performance on models trained without knowledge of the years (randomised CV splits).

| е |  |  |  |
|---|--|--|--|
|   |  |  |  |

Average AUROC for Rar Model CUI Code Raw PCA  $71.30 \pm 1.70$   $78.65 \pm 1.49$ 68.37 LR  $81.87 \pm 2.21$  77.01  $\pm$  2.81 RF 79.42 LSTM 70.15  $\pm$  2.53 75.03  $\pm$  0.81 68.45  $GRUD | 81.43 \pm 3.59$ 79.84

Below are the model performances when trained with feasible training regimes. Mortality AUROC vs. Time, by Model & Representation

![](_page_0_Figure_30.jpeg)

Here Random Forest CareVue → MetaVision

Task 2: Length of Stay Greater Than 3 Days (Classification)

First, we show the performance on models trained without knowledge of the years (5-2 randomised CV splits).

|       | 1                |                  |          |
|-------|------------------|------------------|----------|
| Model |                  | Avera            | age AURC |
|       | Raw              | PCA              | CUI Code |
| LR    | $67.36 \pm 1.91$ | $68.37 \pm 0.93$ | 67.99    |
| RF    | $69.89\pm0.44$   | $67.52 \pm 0.60$ | 66.83    |
| LSTM  | $64.87 \pm 1.09$ | $61.86 \pm 2.25$ | 62.67    |
| GRUD  | $68.95 \pm 1.48$ | -                | 67.48    |

Below are the model performances when trained with feasible training regimes. LOS AUROC vs. Time, by Model & Representation

![](_page_0_Figure_36.jpeg)

| ndom Splits |                  |  |  |  |
|-------------|------------------|--|--|--|
| e Spanning  | Clinical         |  |  |  |
| $\pm 0.98$  | $84.96 \pm 1.26$ |  |  |  |
| $\pm$ 1.90  | $85.87 \pm 2.07$ |  |  |  |
| $\pm$ 2.52  | $83.69\pm0.90$   |  |  |  |
| $\pm$ 1.38  | $82.67\pm2.40$   |  |  |  |

Logistic Regression LSTM

----- GRU-D

e Spanning Clinical  $\pm 0.61$  $70.47\pm0.94$  $71.03\pm0.72$  $\pm 1.13$  $68.75 \pm 1.41$  $\pm 1.90$  $69.89\pm0.40$  $\pm 0.87$ 

# **Do Models Deteriorate Faster for Underrepresented Groups**?

![](_page_0_Figure_43.jpeg)

![](_page_0_Figure_44.jpeg)

Background

## References

Johnson, Alistair EW, et al. "MIMIC-III, a freely accessible critical care database." Scientific data 3 (2016): 160035. Che, Zhengping, et al. "Recurrent neural networks for multivariate time series with missing values." Scientific reports 8.1 (2018): 6085.

## Resources

https://github.com/MLforHealth/MIMIC\_ Generalisation https://arxiv.org/pdf/1908.00690.pdf

![](_page_0_Picture_50.jpeg)

![](_page_0_Picture_52.jpeg)