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Introduction

Clinical trials for AD need to target patients
at earlier stages before significant brain at-
rophies. But diagnosing the disease at an
early stage is challenging. In this work we
focus on learning to differentiate between
cognitively normal aging (CN), mild cogni-
tive impairment (MCI), and Alzheimer’s dis-
ease (AD), using structural brain MRI (T1-
weighted scans).
Motivation: The performance provided by
traditional hand-crafted features is limited.

Figure 1: Visualization of intracranial normalized hip-
pocampus and entorhinal volumes of AD, MCI, and
CN subjects.

Dataset and preprocessing

Dataset Preprocessed T1-weighted struc-
tural MRI scans from the Alzheimer’s
Disease Neuroimaging Initiative(ADNI)
dataset.

Preprocessing
• Clinica software platform to perform
registration.

• Split Train/Validation/Test in subject
level.

•Demographics are shown in Table 1.
Some patients are double counted when
their label transited.

Split Class # subjects # Scans Mean Age (std)

Train
CN 140 567 77.0 (5.4)
MCI 248 840 75.9 (7.3)
AD 193 527 76.7 (7.4)

Val
CN 33 126 77.2 (5.6)
MCI 39 138 73.3 (7.2)
AD 41 124 76.1 (8.3)

Test
CN 24 105 79.0 (6.1)
MCI 43 140 76.7 (6.5)
AD 45 135 76.4 (5.1)

Table 1: Demographics of our training, validation and
test sets after preprocessing.

Challenges

• In contrast to natural images, all scans are
registered and have very similar structure.

•The number of examples is orders of
magnitude smaller than datasets used to
benchmark computer vision tasks.

Method

• Instance normalization
• Small-sized initial kernels and small
strides.

• Wider architecture that is not too deep.
• Incorporating age information through
sinusoids encodings.

Block Layer Type Output size
Inputs 96 × 96 × 96

1

Conv3D k1-c4·f -p0-s1-d1 96 × 96 × 96
InstanceNorm3D
ReLU
MaxPool3D k3-s2 47 × 47 × 47

2

Conv3D k3-c32·f -p0-s1-d2 43 × 43 × 43
InstanceNorm3D
ReLU
MaxPool3D k3-s2 21 × 21 × 21

3

Conv3D k5-c64·f -p2-s1-d2 17 × 17 × 17
InstanceNorm3D
ReLU
MaxPool3D k3-s2 8 × 8 × 8

4

Conv3D k3-c64·f -p1-s1-d2 6 × 6 × 6
InstanceNorm3D
ReLU
MaxPool3D k5-s2 5 × 5 × 5

FC1 1024
FC2 3
Softmax 3

Table 2: The backbone architecture. k = kernel size, c =
number of channels as a multiple of the widening factor
f , p = padding size, s = stride and d = dilation. The
age encoding, if used, is forward propagated through two
linear layers with layer normalization before being added
to the output of FC1.

Comparison to other methods

• Input resolution: 96 × 96 × 96
•Baseline: 3D AlexNet and ResNet-18
Our proposed model outperforms previously re-
ported results by ∼ 14%.

Method Accuracy Balanced Acc Micro-AUC
ResNet-18? 50.8% - -
ResNet-18 pretrained?56.8% - -
ResNet-18 3D� 52.4 ± 1.8% 53.1% -
ResNet-18 3D 50.1 ± 1.1% 51.3 ± 1.0% 71.2 ± 0.4%
AlexNet 3D 57.2 ± 0.5% 56.2 ± 0.8% 75.1 ± 0.4%
proposed• 66.9 ± 1.2% 67.9 ± 1.1% 82.0 ± 0.7%
proposed• + Age 68.2 ± 1.1% 70.0 ± 0.8% 82.0 ± 0.2%

? Results on 2D ResNets initialized with or without pretrained weights on Imagenet
reported by Valliani and Soni (2017).

� 3D ResNet with mild modifications, see Fung et al. (2019) for details. The balanced
accuracy is computed using the confusion matrix in the paper.

• The backbone model showed in Table 2 with a widening factor of 8.

Table 3: Comparison of the published models to our best
proposed models. + Age means that the model incorpo-
rates age encodings.

Ablation study

• Instance Normalization (IN) outperforms Batch
Normalization (BN) for different architectures.

Method Accuracy balanced Acc Micro-AUC Macro-AUC
×4 with IN 63.2 ± 1.0% 63.3 ± 0.9% 80.5 ± 0.5% 77.0 ± 0.7%
×4 with BN 61.8 ± 1.1% 62.2 ± 1.1% 77.0 ± 0.5% 73.0 ± 0.6%
×8 with IN 66.9 ± 1.2% 67.9 ± 1.1% 82.0 ± 0.7% 78.5 ± 0.7%
×8 with BN 58.8 ± 0.9% 60.7 ± 0.7% 75.9 ± 0.7% 73.1 ± 0.8%
ResNet-18 with IN 52.3 ± 0.8% 52.7 ± 1.1% 74.1 ± 0.7% 73.1 ± 0.9%
ResNet-18 with BN 50.1 ± 1.1% 51.3 ± 1.0% 71.2 ± 0.4% 72.4 ± 0.7%

• Small-sized initial kernels and strides in the first
layer result in better performance.

Figure 2: Comparison of the performances of different first layer
kernel and stride sizes.

• Wider vs Deeper: Wider architectures achieve
better performance up until a widening factor of ×4.
Deeper networks only achieve marginal improvement.
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Figure 3: Performance for different widening factors (left) and
numbers of added blocks (right) for backbone architecture.

• Dataset size: Increasing dataset size improves
performance across all evaluation metrics.

Validation with independent dataset

We test the generalization ability of our proposed architecture on the Aus-
tralian Imaging, Biomarkers and Lifestyle (AIBL) which is another lon-
gitudinal dataset of Alzheimer’s disease. A similar performance achieved
as on the ADNI data.

Method Accuracy Balanced Acc Micro-AUC Macro-AUC
proposed on ADNI 66.9 ± 1.2% 67.9 ± 1.1% 82.0 ± 0.7% 78.5 ± 0.7%
proposed on AIBL 63.6 ± 0.7% 65.7 ± 1.1% 90.0 ± 0.6% 82.1 ± 0.7%

Table 4: Comparison of the performance of the proposed model on the ADNI and AIBL
datasets.

Analysis

The model focuses on gray-matter regions around the hippocampus and
the ventricles, which is consistent with existing biomarkers as well as on
some additional regions.
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Figure 4: Visualization of class saliency maps (slices). First row: aggregated maps for all
validation scans. Other rows: examples for each class.
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