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Labeled Heart or with incorporated sample metadata.
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learn representations of data. N
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3. We propose a contrastive learning framework that
utilizes metadata for selecting positive and negative
pairs when training on unlabeled data.
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onlabeled e Performance at 10% and 100% training data
c trasti | _ bett | ” Audio Signal levels are presented for each learning scheme.
an contrastive learning better classily \ [t A In both linear and fine-tune evaluation set-ups,
heart and lung sounds with limited data? Selection e there are marked differences between
iena Spectrogram . . . .
et ™ U contrastive schemes, with the negative pair
T M*’.* Resnet18 | glugtor™> honormal selection of age and sex providing superior
. i performance in both set-ups.
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e \We apply and extend self-supervised methodology in .
T T . . . . e \We demonstrate that augmentation methods
simCLR with views generated by applying . L .
andomized auamentations or selectna  against perform differently in different contexts and it is
e Results for heart sounds classification recordings from t%e <ame samble 9 aj important to optimize contrastive learning
e All contrastive schemes match or surpass o We ence?psulate the complexit pof the unlabelled data frameworks according to the type of data.
baseline performance at 10% with performance or use  as representationg as well as using e Results in lung sounds show that negative pair
saturation for 100% in fine-tune evaluation e e e _ i '
pre-training the encoder as an initialization point for selection bas_ed on age Improve downstream
further fine-tuning lung sound diagnosis tasks the most, followed
by sex.
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