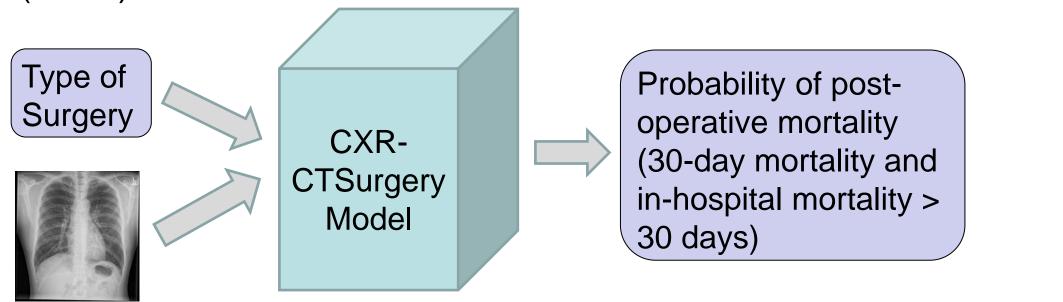


Deep learning to predict post-operative mortality after cardiothoracic surgery using pre-operative chest radiographs

Vineet K. Raghu, PhD; Philicia Moonsamy, MD; Thoralf M. Sundt, MD; Chin Siang Ong, MBBS, PhD; Sanjana Singh; Alexander Cheng; Min Hou, MS; Linda Denning, BSN; Thomas G Gleason, MD; Aaron D. Aguirre, MD, PhD; and Michael T Lu, MD, MPH

Introduction

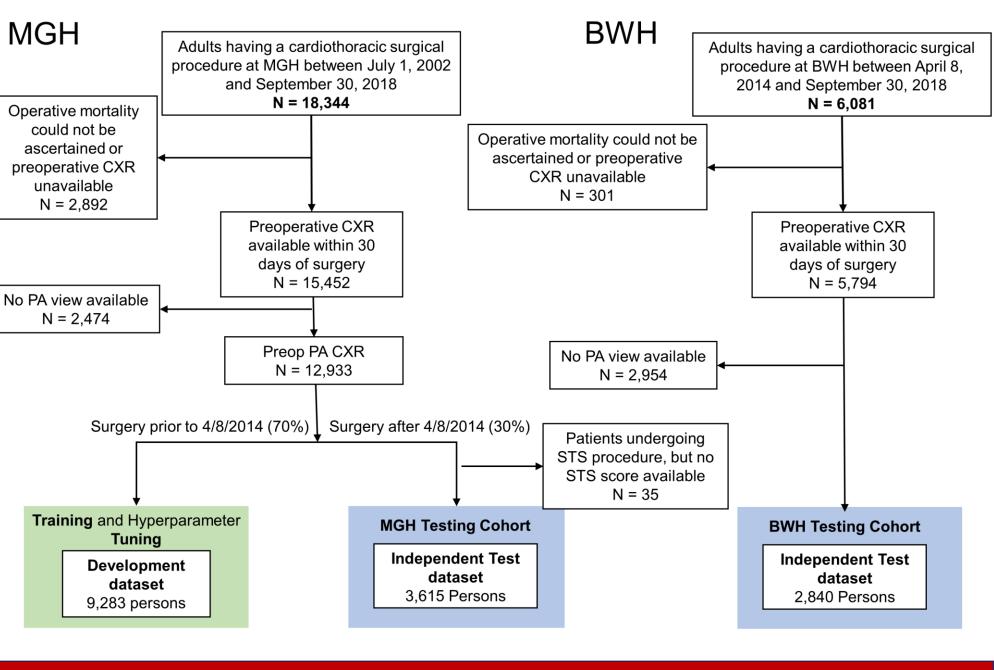

- Decisions whether to proceed with cardiothoracic surgery are made using the Society of Thoracic Surgeons (STS) Predicted Risk of Mortality (STS-PROM) risk score
- STS-PROM is time-intensive to calculate; requiring > 60 inputs
- STS-PROM only applies to ~65% of select procedures (e.g., coronary artery bypass, aortic valve replacement), called STS-Index procedures
- Deep learning models have been able to predict risk of long-term mortality and lung cancer from chest x-ray images.

Purpose

- To develop a deep learning model (CXR-CTSurgery) to predict postoperative mortality based on the pre-operative chest x-ray image
- To compare discrimination for postoperative mortality vs. the STS-PROM, for STS-Index procedures
- To assess whether CXR-CTSurgery retains high discrimination for non-STS-Index procedures

Methods

- Patients undergoing cardiac surgery at Mass General Hospital (MGH) were split 70%-30% for developing and testing the model, respectively
- The model was tested in A) most recent 30% of surgeries at MGH, and B) surgeries at Brigham and Women's Hospital (BWH)


- CXR-CTSurgery was developed based on a previous model [1] (CXR-Risk) to predict 12-year all-cause mortality using transfer learning
- We first trained the model to predict any post-operative adverse event and then fine-tuned the model to predict postoperative mortality to increase the effective event rate

External validation in more diverse cohorts at other institutions

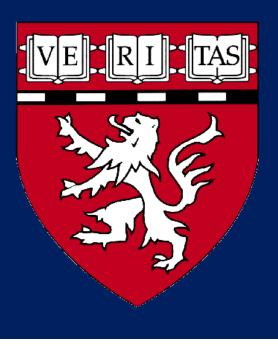
Prospective pilot study to test whether CXR-CTSurgery can be used to help inform postoperative risk for patients undergoing non-STS-Index procedures

A deep learning model, CXR-CTSurgery can predict mortality after cardiac surgery with performance nearing the >60-risk factor clinical standard model, STS-PROM

CXR-CTSurgery has high accuracy for the ~35% of cardiac surgeries not covered by the STS-PROM

Future Work

Age (y) mean (SD) Male Sex (%) Race Asian Black White Hispanic Ethnicity (%) Obesity (%) Diabetes (%) Past MI (%) Hypertension (%) Dyslipidemia (%) Heart Failure Class 3 o Chronic Lung Disease Prior Cardiac Intervent Ever-Smokers (%) STS-PROM mean (SD Operative Mortality (%


Operative Mortalit Baseline

Demographic Mod AUC **CXR-CTSurgery** AUC

STS-PROM AUC

This work was supported by NIH Grant T32HL076136, the Cardiovascular Imaging **Research Center and the Massachusetts General** Hospital's Department of Radiology

Results

Table 1: Development (left) and testing (right) cohort characteristics. Testing cohorts have reduced postoperative mortality and smoking rates

5	0		
	MGH Development (N=9,283)	MGH Testing (N=3,615)	BWH Testing (N=2,840)
	65.7 (13.8)	64.5 (13.3)	64.2 (12.3)
	6,310/9,282 (68 %)	2,584/3,615 (71.5 %)	1,935/2,840 (68.1 %)
	184/8,802 (2.1 %)	114/3,489 (3.3 %)	52/2,723 (1.9%)
	158/8,802 (1.8%)	81/3,489 (2.3 %)	92/2,723 (3.4%)
	8,460/8,802 (96.1 %)	3,179/3,489 (91.1%)	2,579/2,723 (94.7%)
b)	290/9,076 (3.2 %)	160/3,566 (4.5 %)	96/2675 (3.6%)
	2,946/9,274 (31,8%)	1,189/3,612 (32.9 %)	950/2,840 (33.4%)
	2,398/9,281 (25.8 %)	940/3,613 (26.0%)	751/2,840 (26.4 %)
	1,547/5,561 (27.8%)	890/3,592 (24.8 %)	524/2,840 (18.5 %)
	6,903/9,281 (74.4 %)	2,638/3,613 (73.0 %)	2,104/2,840 (74.1 %)
	4,099/5,562 (73.7%)	2,635/3,593 (73.3%)	2,102/2,839 (74.0 %)
or 4 (%)	2,611/4,698 (55.6%)	442/805 (54.9%)	480/957 (50.2 %)
e (%)	1,335/9,271 (14.4%)	406/3,609 (11.2%)	371/2,839 (13.1 %)
ntion (%)	2,730/9,280 (29.4 %)	1,104/3,612 (30.6 %)	894/2,840 (31.5 %)
	3,088/4,422 (69.8 %)	1,830/3,399 (53.8 %)	1,415/2,726 (51.9%)
D)	3.2 (4.2)	2.0 (2.8)	1.7 (2.3)
2⁄0)	251/9283 (2.7%)	63/3,620 (1.7%)	67/2,840 (2.4%)

Table 2: Discrimination for operative mortality of a baseline demographic model (age, sex, race), CXR-CTSurgery, and STS-PROM for patients where STS-PROM could and could not be calculated.

	MGH Testing Cohort		BWH External Testing Cohort	
	Patients without an	Patients with an	Patients without	Patients with an
	STS-PROM	STS-PROM	an STS-PROM	STS-PROM
	(N=1,315)	(N=2,300)	(N=935)	(N=1,905)
ty	39/1,315 (3.0%)	24/2,300 (1.0%)	43/935 (4.6%)	24/1,905 (1.3%)
del	0.712 (0.63,0.79)	0.589 (0.46,0.71)	0.546 (0.46,0.64)	0.612 (0.50,0.72)
	0.874 (0.83, 0.92)	0.829 (0.72, 0.94)	0.727 (0.64,0.81)	0.738 (0.64,0.83)
	NA	0.884 (0.82, 0.95)	NA	0.803 (0.71,0.90)
		-	•	•

References and Acknowledgements

(1) Lu, MT et al. (2019). Deep learning to assess long-term mortality from chest radiographs. JAMA Netw Open. (2) Shahian, DM et al. (2018). The Society of Thoracic Surgeons 2018 Adult Cardiac Surgery Risk Models: Part 1-Background, Design Considerations, and Model Development. Annals of Thoracic Surgery.

(3) O'Brien, SM et al. (2018). The Society of Thoracic Surgeons 2018 Adult Cardiac Surgery Risk Models: Part 2-Statistical Methods and Results. Annals of Thoracic Surgery

(4) Lu, MT*, Raghu, VK*, et al. (2020). Deep learning using chest radiographs to identify high-risk smokers for lung cancer screening computed tomography: development and validation of a prediction model. Annals of Internal Medicine.

