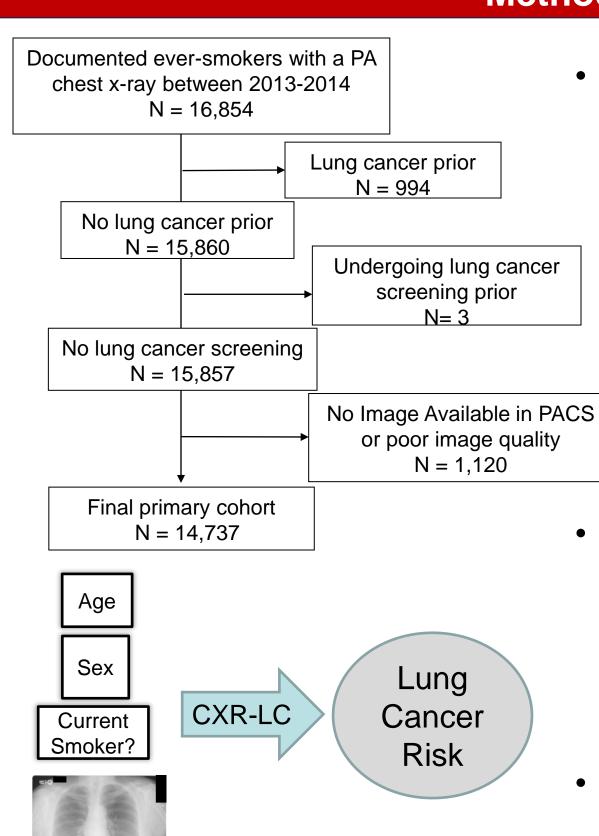


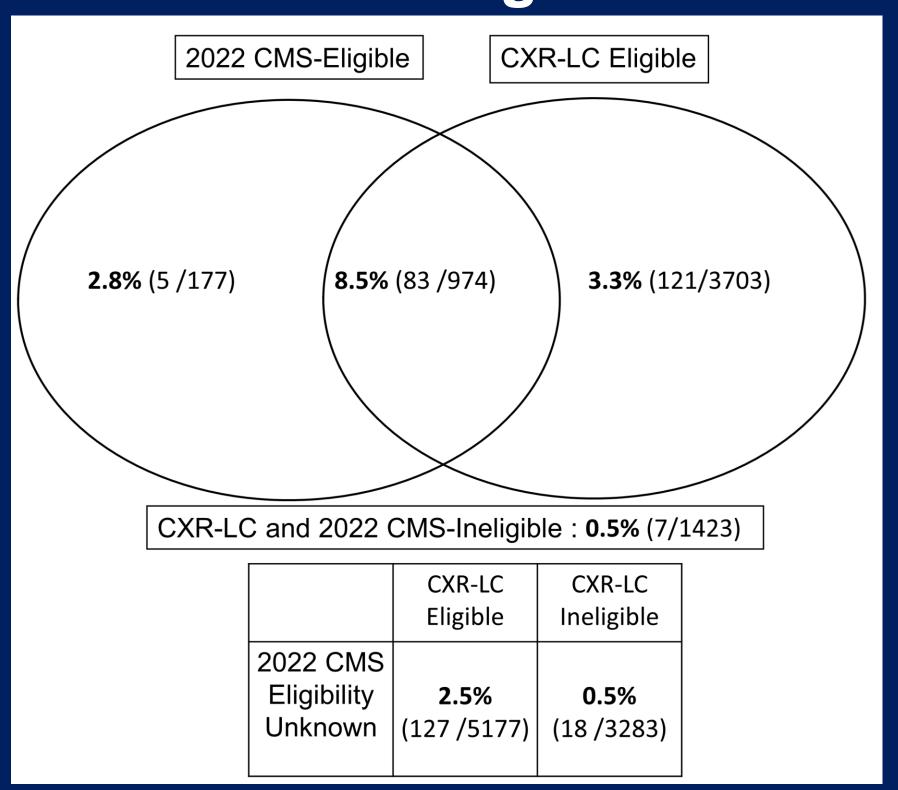
Validation of a deep learning-based model to estimate lung cancer risk from chest radiographs

Vineet K Raghu, PhD, Anika S Walia, Aniket N Zinzuwadia, BA, Inga T Lennes, MD, MBA, and Michael T Lu, MD, MPH Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA


Background

- Lung cancer screening (LCS) with chest CT reduces lung cancer death by 20-25%
- Eligibility for LCS was determined by Centers for Medicare and Medicaid Services (CMS) criteria in 2015:
 - 55-77 years of age
 - ≥30 pack-year smoking history (packs per day x years of smoking)
 - Currently smoking or quit within 15 years
- In 2022, CMS expanded eligibility to those with ≥20 pack-years, 50-77 years
 of age
- <5% of eligible Americans are screened, underscoring the need for approaches to improve uptake
- Automated electronic medical record (EMR) approaches may help but CMS criteria is often not available in the EMR
- A deep learning-based model (CXR-LC) accurately estimated lung cancer risk using a CXR image, age, sex, and whether currently smoking in a retrospective analysis of two large multi-center clinical trial datasets

Purpose


To test whether CXR-LC can estimate lung cancer risk using CXR images and smoking history extracted from the medical record

Methods

- We identified patients at the Mass General Brigham system who were:
 - Documented ever-smokers,
 - Had a posterior-anterior CXR between 2013-2014
 - No prior lung cancer and not undergoing LCS
- We used ICD-9/10 codes to identify patients with primary lung malignancy, and adjudicated incident events using manual chart review
- Smoking information to calculate CXR-LC and CMS eligibility were curated from the medical record

Patients eligible for screening by CMS and CXR-LC had an 8.5% rate of 6-year lung cancer vs. 0.5% for those CMS and CXR-LC ineligible

In 8,460 patients where CMSeligibility could not be determined, CXR-LC eligible patients had a 5-fold higher rate of 6-year lung cancer than ineligible patients (2.5% vs. 0.5%; p < 0.001)

Results

Table 1: Cohort Characteristics

	N = 14,737
Mean age (sd), y	62.6 (6.8)
Male sex (%)	7154 / 14737 (48.5%)
Race	
White	12330 /14473 (85.2%)
Black	1051 / 14473 (7.3%)
Asian	204 / 14473 (1.4%)
Other	456 / 14473 (3.2%)
Hispanic Ethnicity (%)	432 / 14737 (2.9 %)
Current Smoking (%)	3433 / 12807 (26.8%)
Mean years since quit smoking (sd)	19.5 (13.2)
Mean pack-years (sd)	18.6 (23.5)
2022 CMS screening eligible	1151 / 6277 (18.3%)
2015 CMS screening eligible	714 / 7755 (9.2%)
6-year lung cancer incidence (%)	361 / 14737 (2.4%)

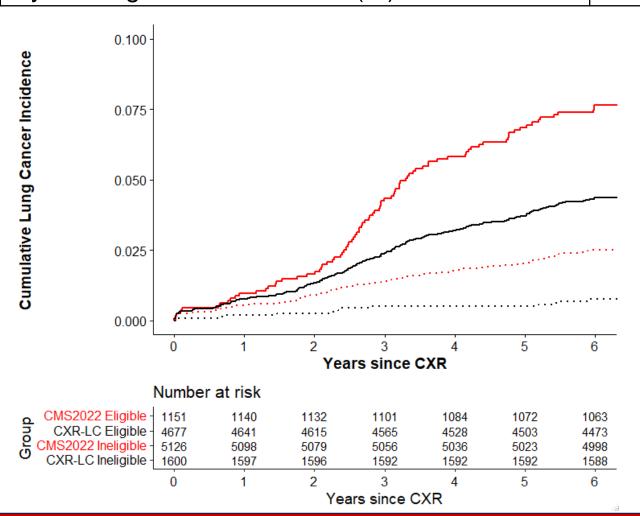


Fig 1: Kaplan-Meier curves show that CXR-LC and CMS eligibility both predict long-term lung cancer risk

- CMS2022 Eliqible
 CXR-LC Eliqible
- ··· CMS2022 Ineligible
- CXR-LC Ineligible

Conclusion

A deep learning model, CXR-LC, can accurately estimate lung cancer risk using data available in the EMR

Similar results were found in an extended analysis of black patients

Next Steps

Pilot study to test whether CXR-LC can improve rates of LCS and reduce lung cancer death

References

- 1. United States Preventive Services Task Force Recommendation Statement
- https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/lung-cancer-screening
- 2. The National Lung Screening Trial Research Team. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomography Screening. *NEJM.* 2011;365:395-409.
- 3. De Koning, HJ et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. NEJM. 2020;382:503-513.
- 4. Lu, MT*, Raghu, VK* et al. Deep learning using chest radiographs to identify high-risk smokers for lung cancer screening: Development and Validation of a Prediction Model. *Annals of Intern. Med.*. 2020;173:704-713.