Predicting Next-Day Discharge via Electronic Health Record Audit Logs
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Hospital capacity management depends on accurate real-time estimates
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of hospital-wide discharges.

Estimation by clinicians requires an excessively large amount of effort and

human accuracy in forecasting next-day patient level discharge is poor.

Next-day discharge predictions with machine learning will move the

hospital capacity management toward an automated way.

EHR audit log data capturing EHR user’ granular interactions with

patients’ records.

We are the first to incorporate EHR audit log data in discharge
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All inpatient-visit associated audit logs of 2019 extracted from Vanderbilt
University Medical Center Epic system.

Feature space covers user-EHR interactions, demographics, admission
diagnoses, admission dates, and clinical measurements.

Light gradient boosting machine: 85% for training, 10% for testing, and 5%
for calibration. 5-fold cross validation.

Shapley additive explanations (SHAP) to identify the most influential types
of user-EHR interactions for discharge prediction.
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inpatient visit. Figure 2: Input feature spaces of models.
" |nputs: 26,283 inpatient stays, 133,398 patient-day observations, and 819 types of user-EHR interactions.
= The Full achieved the highest AUROC of 0.921 (95% Cl: 0.919-0.923).
= The baseline model based on user-EHR interactions achieved an AUROC of 0.890 (0.888-0.892)
= The baseline model without using user-EHR interactions achieved a significantly worse AUROC of 0.862 (0.860-0.892).
= The 10 most influential factors (in terms of SHAP values) were identified by of the best performing model.
= 6 of the 10 most influential factors were user-EHR interaction features.
" The presence of Nurse’s station mode monitoring access tends to contribute to a non-discharge prediction.
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Figure 3:

A,B: Next-day discharge prediction model performance (receiver operating characteristic curve, precision recall curve).
C: Violin plots of factor values against the corresponding SHAP values.
D: Top 10 risk factors in terms of SHAP values.

EHR audit log date captures clinicians’ interactions with patient records

and provide clues into clinicians’ assessments and insights into a
patients’ clinical status.
We explored the novel functions of the audit log data in the discharge

prediction and found the count of each type of user-EHR interactions in
the past 24 hours to be the most effective for the prediction.
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We hope our study can raise researchers’ awareness of EHR audit log
data in prediction analytics.
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