Deep-insight visible neural network (DI-VNN) as a responsible
framework of human and machine learning:
Implementation for prognosticating prelabor rupture of membranes
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v Many problems in medicine, e.g., premature rupture of membranes (PROM), This study has been fully described elsewhere for clinician audience with @ Taipei Medical University, Taiwan
needs prognostication and causal reasoning to develop a prevention strategy, addition of the time of delivery estimation.* ® Universitas Nahdlatul Ulama Surabaya, Indonesia
warranted by growing implementation of insurance-based healthcare ¢ Taipei Medical University Hospital, Taiwan
worldwide. v Study design: Retrospectively selected visits (»=170,730)
v Outcome: PROM (n=23,791) *Corresponding author: emilysu@tmu.edu.tw
V. While prognostication is achievable, causality cannot be inferred yet by v/ Candidate predictors: Medical history (ICD-10 codes)
machine learning.' v Predictive modeling:
Deep learning, convolutional neural network for non-image data with Acknowledgement
v/ These issues urge human involvement to mitigate harmful machine learning hierarchical architecture derived from ontology of the predictors (DI-VNN) _ _ o o
(ML) prediction with causal reasoning, i.e., estimating what may happen if the Statistical ML, ridge regression based on systematic human learning and lg‘;aslo(%?,' JSSe)Cl‘jé';éﬁg{;‘r']”i'ﬁt{ﬁé%rngi2Z"‘;'f,l%re?;?ssr}Opne[‘g’gfcnegsgsa{ﬁejasg‘mslg
conditionals are different to what a machine learns from the previous data. causal inference (causal RR) dataset in this study (dataset request approval no.: 5064/1.2/0421). This work
Computational ML, state-of-the-art algorithms for pregnancy outcomes® (PC- \(/é?gnstunpuprgggg n% tSf\Te1hggniZS;g/1ofE 8003i%n8$86;nadngetcr>]2nﬁlig%&ér(l\élc?uscgziénngri)vyg&
v To provide such framework, we developed deep-insight visible neural network ENR, PC-RF, PC-GBM) . I T i
(DI-VNN) pipeline based on recent studies.*’ Other models from the previous studies,’’ selected by conducting a B%?ﬂ (gr-%r?1t2h$ -ml?As-ﬁrg)ﬁgEéjr%ﬁsthié%gEs)ul.nTTr?claWs%%r(\%?rnrtmgg rr?c? ?cr)le in
systematic review in this study the research design or contents of the manuscript for publication.
e . . . v' Recalibration: A general additive model by locally weighted scatterplot
Objective: To develop, validate, and deploy a prognostic prediction model by smoothing (GAM-LOESS) based on different data partition ey

DI-VNN for PROM using a nationwide health insurance database. v Evaluation: Four external validation sets
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Figure 1. Model evaluation: (a) calibration; (b) receiver operating characteristics (ROC); (c) areas under ROC gradient as shown, including the feature description. Yellow square in an array refer to a feature if only its output is non- e|Sewhere_4
(AUROCs). Showing thresholds (a, b) and average AUROCS per set (c). zero. A feature may not have this square, e.g., causal_A03 and 8602. ONT:154 is an example of a backpropagation Figure 4. A report example of PROM prediction and estimation of the time of delivery. An ontology term in the
effect from ONT:171. Methods to construct the network and array are described elsewhere. timeline is prefixed by ONT, followed by the number and one of the feature members. u
il ) ) " E 4. Conclusion
DI-VNN DI-VNN outperformed other models The prediction was A human can learn on At individual level (Figure 4), we chose visits from a 19-years-old female as an example. The
was the in this and previous studies (Figures robust from 44 + 2 ‘subconscious mind’ of the DI- predicted outcome and probability were shown. We also included the time of delivery
most well- 1b and 1c) by an external validation weeks before the VNN that distinguished signals estimation by PC-RF.* A doctor can see the timeline of positive predictors and how these were DI VN N a”OWS a human tO dSSESS Whether the
calibrated set (area under receiver operating end of pregnancy from N760 (acute vaginitis) and connected in ontology network and array. Population-level performances computed from visits pred|Ct|On reSUItS can be Safely ta ken |nt0 the
(Figure 1a). characteristics curve [AUROC] 0.71, (Figure 2a). causal_AO03 (chorioamnionitis) with the same predicted probability and estimated time of delivery were also shown and may o ]
95% CI 0.70 to 0.72), including one at population level (Figure 2b). serve as a second-line approach to mitigate optimistic bias. Local cohort can be made by a deC|S|on Case-by-case W|th moderate
using a biomarker (AUROC 0.641; doctor in this web application to choose a local threshold. Our web application requires only - g .
n=1,177).° diagnosis/procedure codes and dates (https://predme.app/promtime), making it possible for predlctlve perfOrmance at pOpUIathn level.
quick implementation in low-resource setting.




