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SNOMED CT and RxNorm terminological information. We then add external knowledge base
[subject-relation-object] triples. Finally, we extract opioid specific triples from guidelines. (2)

Graph embeddings (Node2vec and DeepWalk) and Knowledge graph embeddings (TransE and
RotatE) are trained on these triples. (3) We build our alcohol use disorder cohort by selecting ;
positive opioid overdose subjects and controls, negative subjects with up to an observation window
of 2 years and a prediction window of 7 days. (4) For longitudinal predictive algorithms, the
embeddings are used as prior information which the models fine-tune on the cohort data.
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