

Learning Optimal Predictive Checklists

Motivation

- Checklists are simple tools that are often used in clinical applications because they are easy to use, deploy, and scrutinize.
- The large majority of checklists are hand-crafted by panels of a experts.
- However, creating checklists by hand is often a complex and time-consuming process.
- Learning checklists from data allows us to quickly create checklists that can be evaluated using measurable objectives.

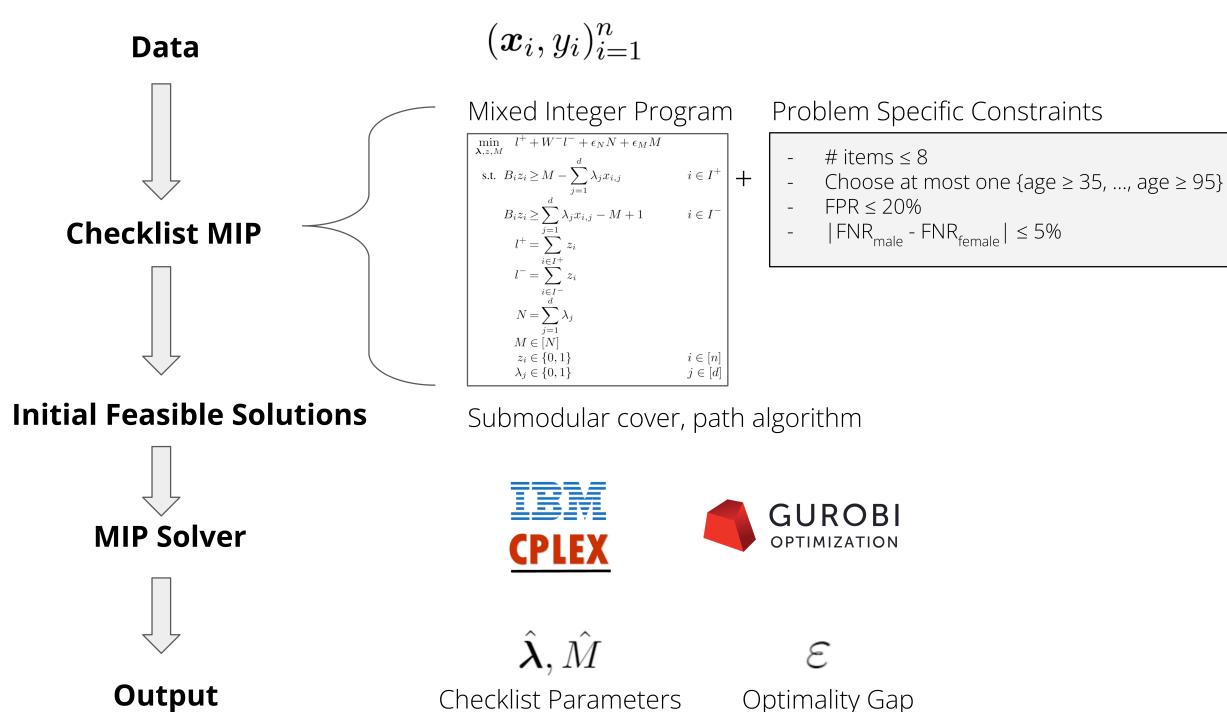
We develop a method to learn predictive checklists from data.

Paper: https://arxiv.org/abs/2112.01020 Code: https://github.com/MLforHealth/predictive_checklists/

Checklists as Simple Linear Models

Data	$(oldsymbol{x}_i,y_i)_{i=1}^n$	$oldsymbol{x}_i \in \{0,1\}^d$	$y_i \in \{0, 1\}$
	e.g. Age \geq 30, Age \geq 45, Age \geq 65,	Systolic BP \ge 140, etc	
Model	$\hat{y}_i = \mathbb{1}(\boldsymbol{\lambda}^T \mathbf{x}_i \ge M)$		
Coefficients	$\boldsymbol{\lambda} = [\lambda_1, \dots, \lambda_d] \in \{0, 1\}^d$ where $\lambda_j = 1 \iff ext{checklet}$	ist uses item j	

Training Pipeline



Haoran Zhang¹, Quaid Morris², Berk Ustun^{3,*}, Marzyeh Ghassemi^{1,4,*} ¹MIT ²MSKCC ³UCSD ⁴Vector Institute *Equal Supervision

Customizable Constraints

	Example	Constraint
Model Size	Use $\leq N_{max}$ items	$N \leq N_{max}$
Binarization	Choose at most one Age feature	$\lambda_{age\geq$ 45 + λ_{age}
Performance	$FPR \leq \beta$	$I^{-} \leq \lceil eta \cdot n^{-} angle$
Group Fairness	Max FPR disparity of δ between males and females	$\left rac{I_M^-}{n_M^-}-rac{I_F^-}{n_F^-} ight \leq$
Minimax Fairness	No group with FNR worse than δ	$I_g^+ \leq \lceil \delta \cdot n_g^+ angle$

Demo: Fair Mortality Prediction

Goal: Predict in-hospital mortality in ICU patients given Continuous Renal Replacement Therapy (CRRT) while maintaining fairness between intersectional groups.

(a) No Fairness Constraints

Predict Mortality Given CRRT if 3+ Items are	Checked
Age \geq 66.0 years	[
$AST \ge 162.6 \; IU/L$	[
Blood pH \leq 7.29	[
$MCV \ge 99.0 fl$	[
Norepinephrine $\geq 0.1 \text{ mcg/kg/min}$	[
$Platelets \leq 65.0 imes 10^3/\mu L$	[
$RDW \ge 19.2\%$	[
Time in ICU \geq 14.1 hours	[

	FNR	FPR	Worst FNR Max	FPR Ga
Training	20.0%	43.9%	33.3%	24.3%
Test	22.2%	52.6%	62.5%	54.5°

(b) With Fairness Constraints

Predict Mortality Given CRRT if 2+ Items are Ch	ecked
$ALT \ge 16.0 \ IU/L$	
$\sf Bicarbonate \leq 17.0 \ \sf mmol/L$	
Blood pH \leq 7.22	
Norepinephrine $\geq 0.1 \text{ mcg/kg/min}$	
$RDW \ge 19.2\%$	
Time in ICU \geq 117.3 hours	

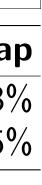
	FNR	FPR	Worst FNR	Max FPR Ga
Training	17.5%	52.2%	18.1%	13.9%
Test	19.6%	55.1%	50.0%	38.3%

Published in NeurIPS 2021

Constraints

- $FNR \le 20\%$
- At most one item per feature
- Use at most 8 items

Objective: Minimize FPR



Constraints

- FNR ≤ 20%
- At most one item per feature
- Use at most 8 items
- FPR gap ≤ 15% _
- Worst FNR $\leq 20\%$

Objective: Minimize FPR